Sustainable Carbon Materials from Hydrothermal Processes (eBook, PDF)
Alle Infos zum eBook verschenken
Sustainable Carbon Materials from Hydrothermal Processes (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The production of low cost and environmentally friendly high performing carbon materials is crucial for a sustainable future. Sustainable Carbon Materials from Hydrothermal Processes describes a sustainable and alternative technique to produce carbon from biomass in water at low temperatures, a process known as Hydrothermal Carbonization (HTC). Sustainable Carbon Materials from Hydrothermal Processes presents an overview of this new and rapidly developing field, discussing various synthetic approaches, characterization of the final products, and modern fields of application for of sustainable…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 38.31MB
- Maria-Magdalena TitiriciSustainable Carbon Materials from Hydrothermal Processes (eBook, ePUB)125,99 €
- Marcelle Gaune-EscardMolten Salts Chemistry and Technology (eBook, PDF)197,99 €
- Green Energetic Materials (eBook, PDF)123,99 €
- Haifei ZhangIce Templating and Freeze-Drying for Porous Materials and Their Applications (eBook, PDF)133,99 €
- Carbon Nanomaterials for Advanced Energy Systems (eBook, PDF)132,99 €
- Carbon Nanofibers (eBook, PDF)197,99 €
- Engineered Ceramics (eBook, PDF)153,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 376
- Erscheinungstermin: 10. Juni 2013
- Englisch
- ISBN-13: 9781118622193
- Artikelnr.: 39054678
- Verlag: John Wiley & Sons
- Seitenzahl: 376
- Erscheinungstermin: 10. Juni 2013
- Englisch
- ISBN-13: 9781118622193
- Artikelnr.: 39054678
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Preface xiii
1 Green Carbon 1
Maria-Magdalena Titirici
1.1 Introduction 1
1.2 Green Carbon Materials 3
1.2.1 CNTs and Graphitic Nanostructures 4
1.2.2 Graphene, Graphene Oxide, and Highly Reduced Graphene Oxide 11
1.2.3 Activated Carbons 14
1.2.4 Starbons 14
1.2.5 Use of Ionic Liquids in the Synthesis of Carbon Materials 19
1.2.6 HTC 27
1.3 Brief History of HTC 27
References 30
2 Porous Hydrothermal Carbons 37
Robin J. White, Tim-Patrick Fellinger, Shiori Kubo, Nicolas Brun, and
Maria-Magdalena Titirici
2.1 Introduction 37
2.2 Templating - An Opportunity for Pore Morphology Control 39
2.2.1 Hard Templating in HTC 40
2.2.2 Soft Templating in HTC 42
2.2.3 Naturally Inspired Systems: Use of Natural Templates 49
2.3 Carbon Aerogels 50
2.3.1 Ovalbumin/Glucose-Derived HTC-Derived Carbogels 52
2.3.2 Borax-Mediated Formation of HTC-Derived Carbogels from Glucose 56
2.3.3 Carbogels from the Hydrothermal Treatment of Sugar and Phenolic
Compounds 63
2.3.4 Emulsion-Templated "Carbo-HIPEs" from the Hydrothermal
Treatment of Sugar Derivatives and Phenolic Compounds 65
2.4 Summary and Outlook 69
References 70
3 Porous Biomass-Derived Carbons: Activated Carbons 75
Dolores Lozano-Castello, Juan Pablo Marco-Lozar, Camillo Falco,
Maria-Magdalena Titirici, and Diego Cazorla-Amoros
3.1 Introduction to Activated Carbons 75
3.2 Chemical Activation of Lignocellulosic Materials 77
3.2.1 H3PO4 Activation of Lignocellulosic Precursors 78
3.2.2 ZnCl2 Activation of Lignocellulosic Precursors 82
3.2.3 KOH and NaOH Activation of Lignocellulosic Precursors 84
3.3 Activated Carbons from Hydrothermally Carbonized Organic Materials and
Biomass 86
3.3.1 Hydrochar Materials: Synthesis, Structural, and Chemical Properties
88
3.3.2 KOH Activation of Hydrochar Materials 89
3.4 Conclusions 95
Acknowledgments 95
References 96
4 Hydrothermally Synthesized Carbonaceous Nanocomposites 101
Bo Hu, Hai-Zhou Zhu, and Shu-Hong Yu
4.1 Introduction 101
4.2 HTC Synthesis of Unique Carbonaceous Nanomaterials 102
4.2.1 Carbonaceous Nanomaterials 102
4.2.2 Carbonaceous Nanocomposites 110
4.3 Conclusion and Outlook 121
Acknowledgments 121
References 121
5 Chemical Modification of Hydrothermal Carbonization Materials 125
Stephanie Wohlgemuth, Hiromitsu Urakami, Li Zhao, and Maria-Magdalena
Titirici
5.1 Introduction 125
5.2 In Situ Doping of Hydrothermal Carbons 126
5.2.1 Nitrogen 126
5.2.2 Sulfur 130
5.2.3 Boron 132
5.2.4 Organic Monomers Sources 132
5.2.5 Properties of Heteroatom-Doped Carbon Materials 133
5.3 Postmodification of Carbonaceous Materials 139
5.3.1 Chemical Handles for Functionalization Present on HTC Materials 140
5.3.2 Perspectives on HTC Postmodification Strategies 143
References 145
6 Characterization of Hydrothermal Carbonization Materials 151
Niki Baccile, Jens Weber, Camillo Falco, and Maria-Magdalena Titirici
6.1 Introduction 151
6.2 Morphology of HTC Materials 152
6.2.1 Morphology of Glucose-Derived Hydrothermal Carbons 153
6.2.2 Morphology of Other Carbohydrate-Derived Hydrothermal Carbons 157
6.2.3 Morphology of Cellulose- and Biomass-Derived Hydrothermal Carbons 159
6.3 Elemental Composition and Yields 161
6.4 FTIR 164
6.5 XPS: Surface Groups 165
6.6 Zeta Potential: Surface Charge 166
6.7 XRD: Degree of Structural Order 169
6.8 Thermal Analysis 170
6.9 Structure Elucidation of Carbon Materials Using Solid-State NMR
Spectroscopy 172
6.9.1 Brief Introduction to Solid-State NMR 172
6.9.2 Solid-State NMR of Crystalline Nanocarbons: Fullerenes and Nanotubes
174
6.9.3 Solid-State NMR Study of Biomass Derivatives and their Pyrolyzed
Carbons 175
6.9.4 Solid-State NMR Study of Hydrothermal Carbons 178
6.10 Porosity Analysis of Hydrothermal Carbons 190
6.10.1 Introduction and Definition of Porosity 190
6.10.2 Gas Physisorption 191
6.10.3 Mercury Intrusion Porosity 202
6.10.4 Scattering Methods 204
References 204
7 Applications of Hydrothermal Carbon in Modern Nanotechnology 213
Marta Sevilla, Antonio B. Fuertes, Rezan Demir-Cakan, and Maria-Magdalena
Titirici
7.1 Introduction 213
7.2 Energy Storage 214
7.2.1 Electrodes in Rechargeable Batteries 215
7.2.2 Electrodes in Supercapacitors 229
7.2.3 Heterogeneous Catalysis 234
7.2.4 HTC-Derived Materials as Catalyst Supports 235
7.2.5 HTC-Derived Materials with Various Functionalities and Intrinsic
Catalytic Properties 239
7.3 Electrocatalysis in Fuel Cells 241
7.3.1 Catalyst Supports in Direct Methanol Fuel Cells 242
7.3.2 Heteroatom-Doped Carbons with Intrinsic Catalytic Activity for the
ORR 250
7.4 Photocatalysis 255
7.5 Gas Storage 260
7.5.1 CO2 Capture Using HTC-Based Carbons 260
7.5.2 Hydrogen Storage Using HTC-Based Activated Carbons 264
7.6 Adsorption of Pollutants from Water 265
7.6.1 Removal of Heavy Metals 265
7.6.2 Removal of Organic Pollutants 271
7.7 HTC-Derived Materials in Sensor Applications 272
7.7.1 Chemical Sensors 272
7.7.2 Gas Sensors 274
7.8 Bioapplications 275
7.9 Drug Delivery 276
7.9.1 Bioimaging 279
7.10 Conclusions and Perspectives 282
References 283
8 Environmental Applications of Hydrothermal Carbonization Technology:
Biochar Production, Carbon Sequestration, and Waste Conversion 295
Nicole D. Berge, Claudia Kammann, Kyoung Ro, and Judy Libra
8.1 Introduction 295
8.2 Waste Conversion to Useful Products 297
8.2.1 Conversion of MSW 298
8.2.2 Conversion of Animal Waste 302
8.2.3 Potential Hydrochar Uses 306
8.3 Soil Application 309
8.3.1 History of the Idea to Sequester Carbon in Soils Using Chars/Coals
309
8.3.2 Consideration of Hydrochar Use in Soils 311
8.3.3 Stability of Hydrochar in Soils 311
8.3.4 Influence of Hydrochar on Soil Fertility and Crop Yields 318
8.3.5 Greenhouse Gas Emissions from Char-Amended Soils 323
8.3.6 Best-Practice Considerations for Biochar/Hydrochar Soil Application
325
8.4 HTC Technology: Commercial Status and Research Needs 325
References 329
9 Scale-Up in Hydrothermal Carbonization 341
Andrea Kruse, Daniela Baris, Nicole Troger, and Peter Wieczorek
9.1 Introduction 341
9.2 Basic Aspects of Process Development and Upscaling 343
9.2.1 Batch/Tubular Reactors 344
9.2.2 CSTRs 345
9.2.3 Product Handling 345
9.3 Risks of Scaling-Up 346
9.4 Lab-Scale Experiments 347
9.4.1 Experimental 347
9.4.2 Results and Discussion 348
9.5 Praxis Report 348
9.6 Conclusions 352
References 353
Index
Preface xiii
1 Green Carbon 1
Maria-Magdalena Titirici
1.1 Introduction 1
1.2 Green Carbon Materials 3
1.2.1 CNTs and Graphitic Nanostructures 4
1.2.2 Graphene, Graphene Oxide, and Highly Reduced Graphene Oxide 11
1.2.3 Activated Carbons 14
1.2.4 Starbons 14
1.2.5 Use of Ionic Liquids in the Synthesis of Carbon Materials 19
1.2.6 HTC 27
1.3 Brief History of HTC 27
References 30
2 Porous Hydrothermal Carbons 37
Robin J. White, Tim-Patrick Fellinger, Shiori Kubo, Nicolas Brun, and
Maria-Magdalena Titirici
2.1 Introduction 37
2.2 Templating - An Opportunity for Pore Morphology Control 39
2.2.1 Hard Templating in HTC 40
2.2.2 Soft Templating in HTC 42
2.2.3 Naturally Inspired Systems: Use of Natural Templates 49
2.3 Carbon Aerogels 50
2.3.1 Ovalbumin/Glucose-Derived HTC-Derived Carbogels 52
2.3.2 Borax-Mediated Formation of HTC-Derived Carbogels from Glucose 56
2.3.3 Carbogels from the Hydrothermal Treatment of Sugar and Phenolic
Compounds 63
2.3.4 Emulsion-Templated "Carbo-HIPEs" from the Hydrothermal
Treatment of Sugar Derivatives and Phenolic Compounds 65
2.4 Summary and Outlook 69
References 70
3 Porous Biomass-Derived Carbons: Activated Carbons 75
Dolores Lozano-Castello, Juan Pablo Marco-Lozar, Camillo Falco,
Maria-Magdalena Titirici, and Diego Cazorla-Amoros
3.1 Introduction to Activated Carbons 75
3.2 Chemical Activation of Lignocellulosic Materials 77
3.2.1 H3PO4 Activation of Lignocellulosic Precursors 78
3.2.2 ZnCl2 Activation of Lignocellulosic Precursors 82
3.2.3 KOH and NaOH Activation of Lignocellulosic Precursors 84
3.3 Activated Carbons from Hydrothermally Carbonized Organic Materials and
Biomass 86
3.3.1 Hydrochar Materials: Synthesis, Structural, and Chemical Properties
88
3.3.2 KOH Activation of Hydrochar Materials 89
3.4 Conclusions 95
Acknowledgments 95
References 96
4 Hydrothermally Synthesized Carbonaceous Nanocomposites 101
Bo Hu, Hai-Zhou Zhu, and Shu-Hong Yu
4.1 Introduction 101
4.2 HTC Synthesis of Unique Carbonaceous Nanomaterials 102
4.2.1 Carbonaceous Nanomaterials 102
4.2.2 Carbonaceous Nanocomposites 110
4.3 Conclusion and Outlook 121
Acknowledgments 121
References 121
5 Chemical Modification of Hydrothermal Carbonization Materials 125
Stephanie Wohlgemuth, Hiromitsu Urakami, Li Zhao, and Maria-Magdalena
Titirici
5.1 Introduction 125
5.2 In Situ Doping of Hydrothermal Carbons 126
5.2.1 Nitrogen 126
5.2.2 Sulfur 130
5.2.3 Boron 132
5.2.4 Organic Monomers Sources 132
5.2.5 Properties of Heteroatom-Doped Carbon Materials 133
5.3 Postmodification of Carbonaceous Materials 139
5.3.1 Chemical Handles for Functionalization Present on HTC Materials 140
5.3.2 Perspectives on HTC Postmodification Strategies 143
References 145
6 Characterization of Hydrothermal Carbonization Materials 151
Niki Baccile, Jens Weber, Camillo Falco, and Maria-Magdalena Titirici
6.1 Introduction 151
6.2 Morphology of HTC Materials 152
6.2.1 Morphology of Glucose-Derived Hydrothermal Carbons 153
6.2.2 Morphology of Other Carbohydrate-Derived Hydrothermal Carbons 157
6.2.3 Morphology of Cellulose- and Biomass-Derived Hydrothermal Carbons 159
6.3 Elemental Composition and Yields 161
6.4 FTIR 164
6.5 XPS: Surface Groups 165
6.6 Zeta Potential: Surface Charge 166
6.7 XRD: Degree of Structural Order 169
6.8 Thermal Analysis 170
6.9 Structure Elucidation of Carbon Materials Using Solid-State NMR
Spectroscopy 172
6.9.1 Brief Introduction to Solid-State NMR 172
6.9.2 Solid-State NMR of Crystalline Nanocarbons: Fullerenes and Nanotubes
174
6.9.3 Solid-State NMR Study of Biomass Derivatives and their Pyrolyzed
Carbons 175
6.9.4 Solid-State NMR Study of Hydrothermal Carbons 178
6.10 Porosity Analysis of Hydrothermal Carbons 190
6.10.1 Introduction and Definition of Porosity 190
6.10.2 Gas Physisorption 191
6.10.3 Mercury Intrusion Porosity 202
6.10.4 Scattering Methods 204
References 204
7 Applications of Hydrothermal Carbon in Modern Nanotechnology 213
Marta Sevilla, Antonio B. Fuertes, Rezan Demir-Cakan, and Maria-Magdalena
Titirici
7.1 Introduction 213
7.2 Energy Storage 214
7.2.1 Electrodes in Rechargeable Batteries 215
7.2.2 Electrodes in Supercapacitors 229
7.2.3 Heterogeneous Catalysis 234
7.2.4 HTC-Derived Materials as Catalyst Supports 235
7.2.5 HTC-Derived Materials with Various Functionalities and Intrinsic
Catalytic Properties 239
7.3 Electrocatalysis in Fuel Cells 241
7.3.1 Catalyst Supports in Direct Methanol Fuel Cells 242
7.3.2 Heteroatom-Doped Carbons with Intrinsic Catalytic Activity for the
ORR 250
7.4 Photocatalysis 255
7.5 Gas Storage 260
7.5.1 CO2 Capture Using HTC-Based Carbons 260
7.5.2 Hydrogen Storage Using HTC-Based Activated Carbons 264
7.6 Adsorption of Pollutants from Water 265
7.6.1 Removal of Heavy Metals 265
7.6.2 Removal of Organic Pollutants 271
7.7 HTC-Derived Materials in Sensor Applications 272
7.7.1 Chemical Sensors 272
7.7.2 Gas Sensors 274
7.8 Bioapplications 275
7.9 Drug Delivery 276
7.9.1 Bioimaging 279
7.10 Conclusions and Perspectives 282
References 283
8 Environmental Applications of Hydrothermal Carbonization Technology:
Biochar Production, Carbon Sequestration, and Waste Conversion 295
Nicole D. Berge, Claudia Kammann, Kyoung Ro, and Judy Libra
8.1 Introduction 295
8.2 Waste Conversion to Useful Products 297
8.2.1 Conversion of MSW 298
8.2.2 Conversion of Animal Waste 302
8.2.3 Potential Hydrochar Uses 306
8.3 Soil Application 309
8.3.1 History of the Idea to Sequester Carbon in Soils Using Chars/Coals
309
8.3.2 Consideration of Hydrochar Use in Soils 311
8.3.3 Stability of Hydrochar in Soils 311
8.3.4 Influence of Hydrochar on Soil Fertility and Crop Yields 318
8.3.5 Greenhouse Gas Emissions from Char-Amended Soils 323
8.3.6 Best-Practice Considerations for Biochar/Hydrochar Soil Application
325
8.4 HTC Technology: Commercial Status and Research Needs 325
References 329
9 Scale-Up in Hydrothermal Carbonization 341
Andrea Kruse, Daniela Baris, Nicole Troger, and Peter Wieczorek
9.1 Introduction 341
9.2 Basic Aspects of Process Development and Upscaling 343
9.2.1 Batch/Tubular Reactors 344
9.2.2 CSTRs 345
9.2.3 Product Handling 345
9.3 Risks of Scaling-Up 346
9.4 Lab-Scale Experiments 347
9.4.1 Experimental 347
9.4.2 Results and Discussion 348
9.5 Praxis Report 348
9.6 Conclusions 352
References 353
Index