Sustainable Materials (eBook, ePUB)
The Role of Artificial Intelligence and Machine Learning
Redaktion: Mishra, Akshansh; Paliwal, Shivangi; S Jatti, Vijaykumar
52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
52,95 €
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
26 °P sammeln
Sustainable Materials (eBook, ePUB)
The Role of Artificial Intelligence and Machine Learning
Redaktion: Mishra, Akshansh; Paliwal, Shivangi; S Jatti, Vijaykumar
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The book explores the use of AI and ML techniques for the design, characterization, and development of prediction analysis of sustainable polymer composites.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
Andere Kunden interessierten sich auch für
- Sustainable Materials (eBook, PDF)52,95 €
- Adrian David CheokThe Rise of Machines (eBook, ePUB)52,95 €
- Machine Learning and IoT Applications for Health Informatics (eBook, ePUB)52,95 €
- Machine Learning Adoption in Blockchain-Based Intelligent Manufacturing (eBook, ePUB)51,95 €
- Future Communication Systems Using Artificial Intelligence, Internet of Things and Data Science (eBook, ePUB)52,95 €
- Network Optimization in Intelligent Internet of Things Applications (eBook, ePUB)52,95 €
- Machine Learning Hybridization and Optimization for Intelligent Applications (eBook, ePUB)52,95 €
-
-
-
The book explores the use of AI and ML techniques for the design, characterization, and development of prediction analysis of sustainable polymer composites.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Erscheinungstermin: 25. Oktober 2024
- Englisch
- ISBN-13: 9781040154281
- Artikelnr.: 72275302
- Verlag: Taylor & Francis
- Erscheinungstermin: 25. Oktober 2024
- Englisch
- ISBN-13: 9781040154281
- Artikelnr.: 72275302
Akshansh Mishra is pursuing a Master's in Materials Engineering and Nanotechnology at Politecnico Di Milano, Milan, Italy. He works on the application of Artificial Intelligence-based algorithms in the Manufacturing and Materials sectors. His main research interests are Cognitive Computing, Advanced Manufacturing, Explainable Artificial Intelligence (XAI), Machine Learning, Natural Language Processing, Nature-based optimization algorithms, and Composite Materials. Vijaykumar S Jatti is an Associate Professor at Symbiosis Institute of Technology, Pune, India. His main research interests are Machine Learning, Mechanical Design, Material Science, Conventional & Non-Conventional Machining Processes, Additive Manufacturing, and Bio-Materials (Metals, Ceramics and Polymers). He has several publications in WoS and Scopus indexed journals. He has received 18 awards in academics & research works. Shivangi Paliwal is pursuing a Ph.D. in Mechanical Engineering, at the University of Kentucky, USA. Before joining the University of Kentucky, she worked as a Junior Research Fellow at the Indian Institute of Technology, Mumbai, India. Her research work integrates experimental and numerical simulation techniques to leverage the potential of additive manufacturing. Her research work reviews sustainability through the use of non-traditional machining and surface engineering.
Preface. Artificial Intelligence in Material Science. Data Driven
Artificial Intelligence Based Approach for the Determination of Structural
Stress Distribution in ASTM D3039 Tensile Specimens of Carbon-Epoxy and
Kevlar-Epoxy Based Composite Materials. Image Segmentation for Evaluating
the Microstructure Features obtained from Magnesium Composites Processed
through Squeeze Casting. Experimental Investigation of Bagasse Ash in
Concrete Material. Computational Material Science for Cheminformatics
Feature Descriptive Language (CFDL) with Categorical Data. Explicit Dynamic
Crash Analysis of a Car using a Metal, Composite Material and an Alloy.
Optimizing Friction Stir Spot Welded ABS Weld Strength using JAYA and
Cohort Intelligence Algorithm. Supervised Machine Learning Based
Classification of Dimensional Deviation of FDM 3D Printed Samples. Polymer
Composite Flexural Strength Estimation using K-Nearest Neighbouring
Classification Algorithm. Supervised Machine Learning Based Classification
of Surface Roughness of Fused Deposition Modeling3D Printed Samples.
Polymer Composite Impact Strength Estimation using K-Nearest Neighbouring
Classification Algorithm. Index.
Artificial Intelligence Based Approach for the Determination of Structural
Stress Distribution in ASTM D3039 Tensile Specimens of Carbon-Epoxy and
Kevlar-Epoxy Based Composite Materials. Image Segmentation for Evaluating
the Microstructure Features obtained from Magnesium Composites Processed
through Squeeze Casting. Experimental Investigation of Bagasse Ash in
Concrete Material. Computational Material Science for Cheminformatics
Feature Descriptive Language (CFDL) with Categorical Data. Explicit Dynamic
Crash Analysis of a Car using a Metal, Composite Material and an Alloy.
Optimizing Friction Stir Spot Welded ABS Weld Strength using JAYA and
Cohort Intelligence Algorithm. Supervised Machine Learning Based
Classification of Dimensional Deviation of FDM 3D Printed Samples. Polymer
Composite Flexural Strength Estimation using K-Nearest Neighbouring
Classification Algorithm. Supervised Machine Learning Based Classification
of Surface Roughness of Fused Deposition Modeling3D Printed Samples.
Polymer Composite Impact Strength Estimation using K-Nearest Neighbouring
Classification Algorithm. Index.
Preface. Artificial Intelligence in Material Science. Data Driven
Artificial Intelligence Based Approach for the Determination of Structural
Stress Distribution in ASTM D3039 Tensile Specimens of Carbon-Epoxy and
Kevlar-Epoxy Based Composite Materials. Image Segmentation for Evaluating
the Microstructure Features obtained from Magnesium Composites Processed
through Squeeze Casting. Experimental Investigation of Bagasse Ash in
Concrete Material. Computational Material Science for Cheminformatics
Feature Descriptive Language (CFDL) with Categorical Data. Explicit Dynamic
Crash Analysis of a Car using a Metal, Composite Material and an Alloy.
Optimizing Friction Stir Spot Welded ABS Weld Strength using JAYA and
Cohort Intelligence Algorithm. Supervised Machine Learning Based
Classification of Dimensional Deviation of FDM 3D Printed Samples. Polymer
Composite Flexural Strength Estimation using K-Nearest Neighbouring
Classification Algorithm. Supervised Machine Learning Based Classification
of Surface Roughness of Fused Deposition Modeling3D Printed Samples.
Polymer Composite Impact Strength Estimation using K-Nearest Neighbouring
Classification Algorithm. Index.
Artificial Intelligence Based Approach for the Determination of Structural
Stress Distribution in ASTM D3039 Tensile Specimens of Carbon-Epoxy and
Kevlar-Epoxy Based Composite Materials. Image Segmentation for Evaluating
the Microstructure Features obtained from Magnesium Composites Processed
through Squeeze Casting. Experimental Investigation of Bagasse Ash in
Concrete Material. Computational Material Science for Cheminformatics
Feature Descriptive Language (CFDL) with Categorical Data. Explicit Dynamic
Crash Analysis of a Car using a Metal, Composite Material and an Alloy.
Optimizing Friction Stir Spot Welded ABS Weld Strength using JAYA and
Cohort Intelligence Algorithm. Supervised Machine Learning Based
Classification of Dimensional Deviation of FDM 3D Printed Samples. Polymer
Composite Flexural Strength Estimation using K-Nearest Neighbouring
Classification Algorithm. Supervised Machine Learning Based Classification
of Surface Roughness of Fused Deposition Modeling3D Printed Samples.
Polymer Composite Impact Strength Estimation using K-Nearest Neighbouring
Classification Algorithm. Index.