Swarm Intelligence (eBook, ePUB)
Trends and Applications
Redaktion: Pinheiro Dos Santos, Wellington; Augusto de Freitas Barbosa, Valter; Carneiro Gomes, Juliana
82,95 €
82,95 €
inkl. MwSt.
Sofort per Download lieferbar
41 °P sammeln
82,95 €
Als Download kaufen
82,95 €
inkl. MwSt.
Sofort per Download lieferbar
41 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
82,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
41 °P sammeln
Swarm Intelligence (eBook, ePUB)
Trends and Applications
Redaktion: Pinheiro Dos Santos, Wellington; Augusto de Freitas Barbosa, Valter; Carneiro Gomes, Juliana
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
In this approach it seeks to present both solid and comprehensive theoretical foundations and examples using the main Computational Intelligence libraries, in programming languages such as Python and R. Real world applications have also been provided in areas as diverse as medicine, biology and industrial applications.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 9.65MB
Andere Kunden interessierten sich auch für
- Swarm Intelligence (eBook, PDF)82,95 €
- Ratnaprabha Ravindra BorhadeEpileptic Seizure Prediction Using Electroencephalogram Signals (eBook, ePUB)51,95 €
- Green Computing and Predictive Analytics for Healthcare (eBook, ePUB)46,95 €
- Omer DemirkayaImage Processing with MATLAB (eBook, ePUB)139,95 €
- Internet of Things and Fog Computing-Enabled Solutions for Real-Life Challenges (eBook, ePUB)47,95 €
- Deep Learning in Internet of Things for Next Generation Healthcare (eBook, ePUB)51,95 €
- Applied Soft Computing and Embedded System Applications in Solar Energy (eBook, ePUB)52,95 €
-
-
-
In this approach it seeks to present both solid and comprehensive theoretical foundations and examples using the main Computational Intelligence libraries, in programming languages such as Python and R. Real world applications have also been provided in areas as diverse as medicine, biology and industrial applications.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 260
- Erscheinungstermin: 17. November 2022
- Englisch
- ISBN-13: 9781000796506
- Artikelnr.: 65847813
- Verlag: Taylor & Francis
- Seitenzahl: 260
- Erscheinungstermin: 17. November 2022
- Englisch
- ISBN-13: 9781000796506
- Artikelnr.: 65847813
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Wellington Pinheiro dos Santos is an Associate Professor at the Department of Biomedical Engineering at the Federal University of Pernambuco (UFPE), Brazil. He is a DSc in Electrical Engineering at the Federal University of Campina Grande (UFCG, 2009), and a MSc (2003) and BSc (2001) in Electrical and Computer Engineering at UFPE, Brazil. His main research interests are pattern recognition, machine learning, intelligent diagnosis systems, evolutionary computing, applied neuroscience, and artificial intelligence in health. Juliana Carneiro Gomes is a Biomedical Engineer from the Federal University of Pernambuco (UFPE, 2016), with a sandwich period at Mercer University, USA. She worked as a researcher at the Advanced Imaging Algorithms and Instrumentation Laboratory at Johns Hopkins University, USA. She is a Master in Biomedical Engineering (UFPE, 2019) and a PhD student in Computer Engineering at the University of Pernambuco (UPE). She is a Professor at the Physics Department at UFPE. Valter Augusto de Freitas Barbosa has a PhD in Mechanical Engineering (2022), a Master in Biomedical Engineering (2017) and a Biomedical Engineer from the Federal University of Pernambuco (2014), Brazil, with a sandwich period at the Université de Technologie de Compiègne, France. He is currently an Assistant Professor at the Federal Rural University of Pernambuco. His research interests are focused on pattern recognition, artificial intelligence and deep neural networks.
SECTION 1: FUNDAMENTALS AND ADVANCEMENTS ON SWARM INTELLIGENCE 1. Swarm
Intelligence Based Algorithm for Feature Selection in High-Dimensional
Datasets 2. Swarm Intelligence for Data Mining 3. Leveraging Center-Based
Sampling Theory for Enhancing Particle Swarm Classification of Textual Data
4. Reinforcement Learning for Out-of-the-box Parameter Control for
Evolutionary and Swarm-based Algorithm SECTION 2: APPLICATIONS 5.
Recognition of Emotions in the Elderly Through Audio Signal Analysis 6.
Recognition of Emotions in the Elderly through Facial Expressions: A
Machine Learning-Based Approach 7. Identification of Emotion Parameters in
Music to Modulate Human Affective States 8. Clinical Decision Support in
the Care of Symptomatic Patients with COVID-19: An Approach Based on
Machine Learning and Swarm Intelligence 9. The Sound of the Mind: Detection
of Common Mental Disorders Using Vocal Acoustic Analysis and Machine
Learning
Intelligence Based Algorithm for Feature Selection in High-Dimensional
Datasets 2. Swarm Intelligence for Data Mining 3. Leveraging Center-Based
Sampling Theory for Enhancing Particle Swarm Classification of Textual Data
4. Reinforcement Learning for Out-of-the-box Parameter Control for
Evolutionary and Swarm-based Algorithm SECTION 2: APPLICATIONS 5.
Recognition of Emotions in the Elderly Through Audio Signal Analysis 6.
Recognition of Emotions in the Elderly through Facial Expressions: A
Machine Learning-Based Approach 7. Identification of Emotion Parameters in
Music to Modulate Human Affective States 8. Clinical Decision Support in
the Care of Symptomatic Patients with COVID-19: An Approach Based on
Machine Learning and Swarm Intelligence 9. The Sound of the Mind: Detection
of Common Mental Disorders Using Vocal Acoustic Analysis and Machine
Learning
SECTION 1: FUNDAMENTALS AND ADVANCEMENTS ON SWARM INTELLIGENCE 1. Swarm
Intelligence Based Algorithm for Feature Selection in High-Dimensional
Datasets 2. Swarm Intelligence for Data Mining 3. Leveraging Center-Based
Sampling Theory for Enhancing Particle Swarm Classification of Textual Data
4. Reinforcement Learning for Out-of-the-box Parameter Control for
Evolutionary and Swarm-based Algorithm SECTION 2: APPLICATIONS 5.
Recognition of Emotions in the Elderly Through Audio Signal Analysis 6.
Recognition of Emotions in the Elderly through Facial Expressions: A
Machine Learning-Based Approach 7. Identification of Emotion Parameters in
Music to Modulate Human Affective States 8. Clinical Decision Support in
the Care of Symptomatic Patients with COVID-19: An Approach Based on
Machine Learning and Swarm Intelligence 9. The Sound of the Mind: Detection
of Common Mental Disorders Using Vocal Acoustic Analysis and Machine
Learning
Intelligence Based Algorithm for Feature Selection in High-Dimensional
Datasets 2. Swarm Intelligence for Data Mining 3. Leveraging Center-Based
Sampling Theory for Enhancing Particle Swarm Classification of Textual Data
4. Reinforcement Learning for Out-of-the-box Parameter Control for
Evolutionary and Swarm-based Algorithm SECTION 2: APPLICATIONS 5.
Recognition of Emotions in the Elderly Through Audio Signal Analysis 6.
Recognition of Emotions in the Elderly through Facial Expressions: A
Machine Learning-Based Approach 7. Identification of Emotion Parameters in
Music to Modulate Human Affective States 8. Clinical Decision Support in
the Care of Symptomatic Patients with COVID-19: An Approach Based on
Machine Learning and Swarm Intelligence 9. The Sound of the Mind: Detection
of Common Mental Disorders Using Vocal Acoustic Analysis and Machine
Learning