Swarm Intelligence Optimization (eBook, ePUB)
Algorithms and Applications
Redaktion: Kumar, Abhishek; Agrawal, Rashmi; Diaz, Vicente Garcia; Rathore, Pramod Singh
Alle Infos zum eBook verschenken
Swarm Intelligence Optimization (eBook, ePUB)
Algorithms and Applications
Redaktion: Kumar, Abhishek; Agrawal, Rashmi; Diaz, Vicente Garcia; Rathore, Pramod Singh
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Resource optimization has always been a thrust area of research, and as the Internet of Things (IoT) is the most talked about topic of the current era of technology, it has become the need of the hour. Therefore, the idea behind this book was to simplify the journey of those who aspire to understand resource optimization in the IoT. To this end, included in this book are various real-time/offline applications and algorithms/case studies in the fields of engineering, computer science, information security, and cloud computing, along with the modern tools and various technologies used in…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 17.21MB
- Kuldeep Singh KaswanSwarm Intelligence (eBook, ePUB)134,99 €
- Artificial Intelligent Techniques for Electric and Hybrid Electric Vehicles (eBook, ePUB)170,99 €
- Intelligent Decision Support Systems for Smart City Applications (eBook, ePUB)96,99 €
- Computational Intelligence and Healthcare Informatics (eBook, ePUB)190,99 €
- Cognitive Intelligence and Big Data in Healthcare (eBook, ePUB)205,99 €
- Ambient Intelligence and Internet Of Things (eBook, ePUB)173,99 €
- Artificial Intelligence Applications and Reconfigurable Architectures (eBook, ePUB)173,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Jossey-Bass
- Seitenzahl: 384
- Erscheinungstermin: 19. November 2020
- Englisch
- ISBN-13: 9781119778905
- Artikelnr.: 60674923
- Verlag: Jossey-Bass
- Seitenzahl: 384
- Erscheinungstermin: 19. November 2020
- Englisch
- ISBN-13: 9781119778905
- Artikelnr.: 60674923
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 A Fundamental Overview of Different Algorithms and Performance Optimization for Swarm Intelligence 1
Manju Payal, Abhishek Kumar and Vicente García Díaz
1.1 Introduction 1
1.2 Methodology of SI Framework 3
1.3 Composing With SI 7
1.4 Algorithms of the SI 7
1.5 Conclusion 18
References 18
2 Introduction to IoT With Swarm Intelligence 21
Anant Mishra and Jafar Tahir
2.1 Introduction 21
2.1.1 Literature Overview 22
2.2 Programming 22
2.2.1 Basic Programming 22
2.2.2 Prototyping 22
2.3 Data Generation 23
2.3.1 From Where the Data Comes? 23
2.3.2 Challenges of Excess Data 24
2.3.3 Where We Store Generated Data? 24
2.3.4 Cloud Computing and Fog Computing 25
2.4 Automation 26
2.4.1 What is Automation? 26
2.4.2 How Automation is Being Used? 26
2.5 Security of the Generated Data 30
2.5.1 Why We Need Security in Our Data? 30
2.5.2 What Types of Data is Being Generated? 31
2.5.3 Protecting Different Sector Working on the Principle of IoT 32
2.6 Swarm Intelligence 33
2.6.1 What is Swarm Intelligence? 33
2.6.2 Classification of Swarm Intelligence 33
2.6.3 Properties of a Swarm Intelligence System 34
2.7 Scope in Educational and Professional Sector 36
2.8 Conclusion 37
References 38
3 Perspectives and Foundations of Swarm Intelligence and its Application 41
Rashmi Agrawal
3.1 Introduction 41
3.2 Behavioral Phenomena of Living Beings and Inspired Algorithms 42
3.2.1 Bee Foraging 42
3.2.2 ABC Algorithm 43
3.2.3 Mating and Marriage 43
3.2.4 MBO Algorithm 44
3.2.5 Coakroach Behavior 44
3.3 Roach Infestation Optimization 45
3.3.1 Lampyridae Bioluminescence 45
3.3.2 GSO Algorithm 46
3.4 Conclusion 46
References 47
4 Implication of IoT Components and Energy Management Monitoring 49
Shweta Sharma, Praveen Kumar Kotturu and Prafful Chandra Narooka
4.1 Introduction 49
4.2 IoT Components 53
4.3 IoT Energy Management 56
4.4 Implication of Energy Measurement for Monitoring 57
4.5 Execution of Industrial Energy Monitoring 58
4.6 Information Collection 59
4.7 Vitality Profiles Analysis 59
4.8 IoT-Based Smart Energy Management System 61
4.9 Smart Energy Management System 61
4.10 IoT-Based System for Intelligent Energy Management in Buildings 62
4.11 Smart Home for Energy Management Using IoT 62
References 64
5 Distinct Algorithms for Swarm Intelligence in IoT 67
Trapty Agarwal, Gurjot Singh, Subham Pradhan and Vikash Verma
5.1 Introduction 67
5.2 Swarm Bird-Based Algorithms for IoT 68
5.2.1 Particle Swarm Optimization (PSO) 68
5.2.1.1 Statistical Analysis 68
5.2.1.2 Algorithm 68
5.2.1.3 Applications 69
5.2.2 Cuckoo Search Algorithm 69
5.2.2.1 Statistical Analysis 69
5.2.2.2 Algorithm 70
5.2.2.3 Applications 70
5.2.3 Bat Algorithm 71
5.2.3.1 Statistical Analysis 71
5.2.3.2 Algorithm 71
5.2.3.3 Applications 72
5.3 Swarm Insect-Based Algorithm for IoT 72
5.3.1 Ant Colony Optimization 72
5.3.1.1 Flowchart 73
5.3.1.2 Applications 73
5.3.2 Artificial Bee Colony 74
5.3.2.1 Flowchart 75
5.3.2.2 Applications 75
&nb
1 A Fundamental Overview of Different Algorithms and Performance Optimization for Swarm Intelligence 1
Manju Payal, Abhishek Kumar and Vicente García Díaz
1.1 Introduction 1
1.2 Methodology of SI Framework 3
1.3 Composing With SI 7
1.4 Algorithms of the SI 7
1.5 Conclusion 18
References 18
2 Introduction to IoT With Swarm Intelligence 21
Anant Mishra and Jafar Tahir
2.1 Introduction 21
2.1.1 Literature Overview 22
2.2 Programming 22
2.2.1 Basic Programming 22
2.2.2 Prototyping 22
2.3 Data Generation 23
2.3.1 From Where the Data Comes? 23
2.3.2 Challenges of Excess Data 24
2.3.3 Where We Store Generated Data? 24
2.3.4 Cloud Computing and Fog Computing 25
2.4 Automation 26
2.4.1 What is Automation? 26
2.4.2 How Automation is Being Used? 26
2.5 Security of the Generated Data 30
2.5.1 Why We Need Security in Our Data? 30
2.5.2 What Types of Data is Being Generated? 31
2.5.3 Protecting Different Sector Working on the Principle of IoT 32
2.6 Swarm Intelligence 33
2.6.1 What is Swarm Intelligence? 33
2.6.2 Classification of Swarm Intelligence 33
2.6.3 Properties of a Swarm Intelligence System 34
2.7 Scope in Educational and Professional Sector 36
2.8 Conclusion 37
References 38
3 Perspectives and Foundations of Swarm Intelligence and its Application 41
Rashmi Agrawal
3.1 Introduction 41
3.2 Behavioral Phenomena of Living Beings and Inspired Algorithms 42
3.2.1 Bee Foraging 42
3.2.2 ABC Algorithm 43
3.2.3 Mating and Marriage 43
3.2.4 MBO Algorithm 44
3.2.5 Coakroach Behavior 44
3.3 Roach Infestation Optimization 45
3.3.1 Lampyridae Bioluminescence 45
3.3.2 GSO Algorithm 46
3.4 Conclusion 46
References 47
4 Implication of IoT Components and Energy Management Monitoring 49
Shweta Sharma, Praveen Kumar Kotturu and Prafful Chandra Narooka
4.1 Introduction 49
4.2 IoT Components 53
4.3 IoT Energy Management 56
4.4 Implication of Energy Measurement for Monitoring 57
4.5 Execution of Industrial Energy Monitoring 58
4.6 Information Collection 59
4.7 Vitality Profiles Analysis 59
4.8 IoT-Based Smart Energy Management System 61
4.9 Smart Energy Management System 61
4.10 IoT-Based System for Intelligent Energy Management in Buildings 62
4.11 Smart Home for Energy Management Using IoT 62
References 64
5 Distinct Algorithms for Swarm Intelligence in IoT 67
Trapty Agarwal, Gurjot Singh, Subham Pradhan and Vikash Verma
5.1 Introduction 67
5.2 Swarm Bird-Based Algorithms for IoT 68
5.2.1 Particle Swarm Optimization (PSO) 68
5.2.1.1 Statistical Analysis 68
5.2.1.2 Algorithm 68
5.2.1.3 Applications 69
5.2.2 Cuckoo Search Algorithm 69
5.2.2.1 Statistical Analysis 69
5.2.2.2 Algorithm 70
5.2.2.3 Applications 70
5.2.3 Bat Algorithm 71
5.2.3.1 Statistical Analysis 71
5.2.3.2 Algorithm 71
5.2.3.3 Applications 72
5.3 Swarm Insect-Based Algorithm for IoT 72
5.3.1 Ant Colony Optimization 72
5.3.1.1 Flowchart 73
5.3.1.2 Applications 73
5.3.2 Artificial Bee Colony 74
5.3.2.1 Flowchart 75
5.3.2.2 Applications 75
&nb