Symbolic Data Analysis and the SODAS Software (eBook, PDF)
Redaktion: Diday, Edwin; Noirhomme-Fraiture, Monique
Alle Infos zum eBook verschenken
Symbolic Data Analysis and the SODAS Software (eBook, PDF)
Redaktion: Diday, Edwin; Noirhomme-Fraiture, Monique
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Symbolic data analysis is a relatively new field that provides a range of methods for analyzing complex datasets. Standard statistical methods do not have the power or flexibility to make sense of very large datasets, and symbolic data analysis techniques have been developed in order to extract knowledge from such data. Symbolic data methods differ from that of data mining, for example, because rather than identifying points of interest in the data, symbolic data methods allow the user to build models of the data and make predictions about future events. This book is the result of the work f a…mehr
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- The Data Bonanza (eBook, PDF)99,99 €
- Andrea Ahlemeyer-StubbeMonetizing Data (eBook, PDF)58,99 €
- Tamraparni DasuExploratory Data Mining and Data Cleaning (eBook, PDF)131,99 €
- Venkat SrinivasanThe Intelligent Enterprise in the Era of Big Data (eBook, PDF)35,99 €
- Yusuf AytasDesigning Big Data Platforms (eBook, PDF)114,99 €
- Jussi KlemeläSmoothing of Multivariate Data (eBook, PDF)138,99 €
- Samuel E. ButtreyA Data Scientist's Guide to Acquiring, Cleaning, and Managing Data in R (eBook, PDF)60,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in D ausgeliefert werden.
- Produktdetails
- Verlag: Jossey-Bass
- Erscheinungstermin: 15. April 2008
- Englisch
- ISBN-13: 9780470723555
- Artikelnr.: 37298706
- Verlag: Jossey-Bass
- Erscheinungstermin: 15. April 2008
- Englisch
- ISBN-13: 9780470723555
- Artikelnr.: 37298706
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Foreword.
Preface.
ASSO Partners.
Introduction.
1. The state of the art in symbolic data analysis: overview and future
(Edwin Diday).
PART I. DATABASES VERSUS SYMBOLIC OBJECTS.
2. Improved generation of symbolic objects from relational databases (Yves
Lechevallier, Aicha El Golli and George Hébrail).
3. Exporting symbolic objects to databases (Donato Malerba, Floriana
Esposito and Annalisa Appice).
4. A statistical metadata model for symbolic objects (Haralambos
Papageorgiou and Maria Vardaki).
5. Editing symbolic data (Monique-Noirhomme-Fraiture, Paula Brito, Anne de
Baenst-Vandenbroucke and Adolphe Nahimana).
6. The normal symbolic form (Marc Csernel and Francisco de A.T. de
Carvalho).
7. Visualization (Monique-Noirhomme-Fraiture and Adolphe Nahimana).
PART II. UNSUPERVISED METHODS.
8. Dissimilarity and matching (Floriana Esposito, Donato Malerba and
Annalisa Appice).
9. Unsupervised divisive classification (Jean-Paul Rasson, Jean-Yves
Pirçon, Pascale Lallemand and Séverine Adans).
10. Hierarchical and pyramidal clustering (Paula Brito and Francisco de
A.T. de Carvalho).
11 .Clustering methods in symbolic data analysis (Francisco de A.T. de
Carvalho, Yves Lechevallier and Rosanna Verde).
12. Visualizing symbolic data by Kohonen maps (Hans-Hermann Bock).
13 .Validation of clustering structure: determination of the number of
clusters (André Hardy).
14. Stability measures for assessing a partition and its clusters:
application to symbolic data sets (Patrice Bertrand and Ghazi Bel Mufti).
15. Principal component analysis of symbolic data described by intervals
(N.Carlo Lauro, Rosanna Verde and Antonio Irpino).
16. Generalized canonical analysis (N.Carlo Lauro, Rosanna Verde and
Antonio Irpino).
PART III .SUPERVISED METHODS.
17. Bayesian decision trees (Jean-Paul Rasson, Pascale Lallemand and
Séverine Adans).
18. Factor discriminant analysis (N.Carlo Lauro, Rosanna Verde and Antonio
Irpino).
19. Symbolic linear regression methodology (Filipe Afonso, Lynne Billard,
Edwin Diday and Mehdi Limam).
20. Multi-layer perceptrons and symbolic data (Fabrice Rossi and Brieuc
Conan-Guez).
PART IV. APPLICATION AND THE SODAS SOFTWARE.
21. Application to the Finnish, Spanish and Portuguese data of the European
Social Survey (Soile Mustjärvi and Seppo Laaksonen).
22. People's life values and trust components in Europe: symbolic data
analysis for 20-22 countries (Seppo Laaksonen).
23. Symbolic analysis of the Time Use Survey in the Basque country (Marta
Mas and Haritz Olaeta).
24. SODAS2 software: overview and methodology (Anne de Baenst-Vandenbroucke
and Yves Lechevallier).
Index.
Foreword.
Preface.
ASSO Partners.
Introduction.
1. The state of the art in symbolic data analysis: overview and future
(Edwin Diday).
PART I. DATABASES VERSUS SYMBOLIC OBJECTS.
2. Improved generation of symbolic objects from relational databases (Yves
Lechevallier, Aicha El Golli and George Hébrail).
3. Exporting symbolic objects to databases (Donato Malerba, Floriana
Esposito and Annalisa Appice).
4. A statistical metadata model for symbolic objects (Haralambos
Papageorgiou and Maria Vardaki).
5. Editing symbolic data (Monique-Noirhomme-Fraiture, Paula Brito, Anne de
Baenst-Vandenbroucke and Adolphe Nahimana).
6. The normal symbolic form (Marc Csernel and Francisco de A.T. de
Carvalho).
7. Visualization (Monique-Noirhomme-Fraiture and Adolphe Nahimana).
PART II. UNSUPERVISED METHODS.
8. Dissimilarity and matching (Floriana Esposito, Donato Malerba and
Annalisa Appice).
9. Unsupervised divisive classification (Jean-Paul Rasson, Jean-Yves
Pirçon, Pascale Lallemand and Séverine Adans).
10. Hierarchical and pyramidal clustering (Paula Brito and Francisco de
A.T. de Carvalho).
11 .Clustering methods in symbolic data analysis (Francisco de A.T. de
Carvalho, Yves Lechevallier and Rosanna Verde).
12. Visualizing symbolic data by Kohonen maps (Hans-Hermann Bock).
13 .Validation of clustering structure: determination of the number of
clusters (André Hardy).
14. Stability measures for assessing a partition and its clusters:
application to symbolic data sets (Patrice Bertrand and Ghazi Bel Mufti).
15. Principal component analysis of symbolic data described by intervals
(N.Carlo Lauro, Rosanna Verde and Antonio Irpino).
16. Generalized canonical analysis (N.Carlo Lauro, Rosanna Verde and
Antonio Irpino).
PART III .SUPERVISED METHODS.
17. Bayesian decision trees (Jean-Paul Rasson, Pascale Lallemand and
Séverine Adans).
18. Factor discriminant analysis (N.Carlo Lauro, Rosanna Verde and Antonio
Irpino).
19. Symbolic linear regression methodology (Filipe Afonso, Lynne Billard,
Edwin Diday and Mehdi Limam).
20. Multi-layer perceptrons and symbolic data (Fabrice Rossi and Brieuc
Conan-Guez).
PART IV. APPLICATION AND THE SODAS SOFTWARE.
21. Application to the Finnish, Spanish and Portuguese data of the European
Social Survey (Soile Mustjärvi and Seppo Laaksonen).
22. People's life values and trust components in Europe: symbolic data
analysis for 20-22 countries (Seppo Laaksonen).
23. Symbolic analysis of the Time Use Survey in the Basque country (Marta
Mas and Haritz Olaeta).
24. SODAS2 software: overview and methodology (Anne de Baenst-Vandenbroucke
and Yves Lechevallier).
Index.