Synthesis of Five-Membered Heterocycles: Role of DMF as Solvent, Reagent, Catalyst, and Stabilizer helps readers quickly assess possible synthetic approaches. The book's audience, researchers, academic professionals and synthetic chemists both in industry and academia will find detailed information about the synthesis of five-membered heterocyclic compounds using dimethylformamide. Over the years, heterocyclic compounds, especially five-membered, have drawn more attention of pharmaceutical community because of their therapeutic value. The formation of heterocyclic compounds has turned out to be the keystone of synthetic organic chemistry.
Dimethylformamide has played an important role in organic synthesis for a long time, and it is frequently utilized as a common solvent for chemical reactions and broadly used in industry as a reagent. It is a unique chemical and can play three other roles in organic chemistry, i.e., as stabilizer, reagent and catalyst. Due to its structure, DMF can participate in several reactions as a versatile building block for several units.
Dimethylformamide has played an important role in organic synthesis for a long time, and it is frequently utilized as a common solvent for chemical reactions and broadly used in industry as a reagent. It is a unique chemical and can play three other roles in organic chemistry, i.e., as stabilizer, reagent and catalyst. Due to its structure, DMF can participate in several reactions as a versatile building block for several units.
- Includes comprehensive descriptions of heterocycle synthesis
- Highlights many methods for the synthesis of five-membered heterocyclic compounds using dimethylformamide
- Helps readers quickly assess possible synthetic approaches
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.