Douglas R. Stinson
Techniques for Designing and Analyzing Algorithms (eBook, PDF)
59,95 €
59,95 €
inkl. MwSt.
Sofort per Download lieferbar
30 °P sammeln
59,95 €
Als Download kaufen
59,95 €
inkl. MwSt.
Sofort per Download lieferbar
30 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
59,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
30 °P sammeln
Douglas R. Stinson
Techniques for Designing and Analyzing Algorithms (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This text presents the main techniques of algorithm design, namely, divide-and-conquer algorithms, greedy algorithms, dynamic programming algorithms, and backtracking. Graph algorithms are studied in detail, and a careful treatment of the theory of NP-completeness is presented.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
Andere Kunden interessierten sich auch für
- Sachi Nandan MohantyThe Art of Algorithm Design (eBook, PDF)58,95 €
- Dietmar HildenbrandThe Power of Geometric Algebra Computing (eBook, PDF)46,95 €
- David E. CloughIntroduction to Engineering and Scientific Computing with Python (eBook, PDF)94,95 €
- Uday KamathTransformers for Machine Learning (eBook, PDF)46,95 €
- Rakesh NayakPython for Engineers and Scientists (eBook, PDF)94,95 €
- Seyedeh Leili MirtaheriMachine Learning (eBook, PDF)56,95 €
- Mohammad RostamiTransfer Learning through Embedding Spaces (eBook, PDF)46,95 €
-
-
-
This text presents the main techniques of algorithm design, namely, divide-and-conquer algorithms, greedy algorithms, dynamic programming algorithms, and backtracking. Graph algorithms are studied in detail, and a careful treatment of the theory of NP-completeness is presented.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 444
- Erscheinungstermin: 5. August 2021
- Englisch
- ISBN-13: 9781000403695
- Artikelnr.: 62300598
- Verlag: Taylor & Francis
- Seitenzahl: 444
- Erscheinungstermin: 5. August 2021
- Englisch
- ISBN-13: 9781000403695
- Artikelnr.: 62300598
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Douglas R. Stinson obtained his PhD in Combinatorics and Optimization from the University of Waterloo in 1981. He held academic positions at the University of Manitoba and the University of Nebraska-Lincoln before returning to Waterloo in 1998. In 2019, Dr. Stinson retired from the David R. Cheriton School of Computer Science at the University of Waterloo and he now holds the title Professor Emeritus. His research interests include cryptography and computer security, combinatorics and coding theory, and applications of discrete mathematics in computer science. He was elected as a Fellow of the Royal Society of Canada in 2011. He has published almost 400 papers and several books, including Cryptography: Theory and Practice, Fourth Edition, also published by CRC Press.
1. Introduction and Mathematical Background. 1.1. Algorithms and Programs.
1.2. Definitions and Terminology. 1.3. Order Notation. 1.4. Mathematical
Formulae. 1.5. Probability Theory and Random Variables. 1.6. Notes and
References. Exercises. 2. Algorithm Analysis and Reductions. 2.1. Loop
Analysis Techniques. 2.2. Algorithms for the 3SUM Problem. 2.3. Reductions.
2.4. Exact Analysis. 2.5. Notes and References. Exercises. 3. Data
Structures. 3.1. Abstract Data Types and Data Structures. 3.2. Arrays,
Linked Lists and Sets. 3.3. Stacks and Queues. 3.4. Priority Queues and
Heaps. 3.6. Hash Tables. 3.7. Notes and References. Exercises. 4.
Divide-and-Conquer Algorithms. 4.1. Recurrence Relations. 4.2. The Master
Theorem. 4.3. Divide-and-Conquer Design Strategy. 4.4. Divide-and-Conquer
Recurrence Relations. 4.5. Binary Search. 4.6. Non-dominated Points. 4.7.
Stock Profits. 4.8. Closest Pair. 4.9. Multiprecision Multiplication. 4.10.
Modular Exponentiation. 4.11. Matrix Multiplication. 4.12. QuickSort. 4.13.
Selection and Median. 4.14. Notes and References. Exercises. 5. Greedy
Algorithms. 5.1. Optimization Problems. 5.2. Greedy Design Strategy. 5.3.
Interval Selection. 5.4. Interval Coloring. 5.5. Wireless Access Points.
5.6. A House Construction Problem. 5.7. Knapsack. 5.8. Coin Changing. 5.9.
Multiprocessor Scheduling. 5.10. Stable Matching. 5.11. Notes and
References. Exercises. 6 Dynamic Programming Algorithms. 6.1. Fibonacci
Numbers. 6.2. Design Strategy. 6.3. Treasure Hunt. 6.4. 0-1 Knapsack. 6.5.
Rod Cutting. 6.6. Coin Changing. 6.7. Longest Common Subsequence. 6.8.
Minimum Length Triangulation. 6.9. Memoization. 6.10. Notes and References.
Exercises. 7. Graph Algorithms. 7.1. Graphs. 7.2. Breadth-first Search.
7.3. Directed Graphs. 7.4. Depth-first Search. 7.5. Strongly Connected
Components. 7.6. Eulerian Circuits. 7.7. Minimum Spanning Trees. 7.8.
Single Source Shortest Paths. 7.9. All-Pairs Shortest Paths. 7.10. Notes
and References. Exercises. 8. Backtracking Algorithms. 8.1. Introduction.
8.2. Generating all Cliques. 8.3. Sudoku. 8.4. Pruning and Bounding
Functions. 8.5. 0-1 Knapsack Problem. 8.6. Traveling Salesperson Problem.
8.7. Branch-and-bound. 8.8. Notes and References. Exercises. 9.
Intractability and Undecidability. 9.1. Decision Problems and the
Complexity Class P. 9.2. Polynomial-time Turing Reductions. 9.3. The
Complexity Class NP. 9.4. Polynomial Transformations. 9.5. NP-completeness.
9.6. Proving Problems NP-complete. 9.7. NP-hard Problems. 9.8.
Approximation Algorithms. 9.9. Undecidability. 9.10. The Complexity Class
EXPTIME. 9.11. Notes and References. Exercises. Bibliography. Index.
1.2. Definitions and Terminology. 1.3. Order Notation. 1.4. Mathematical
Formulae. 1.5. Probability Theory and Random Variables. 1.6. Notes and
References. Exercises. 2. Algorithm Analysis and Reductions. 2.1. Loop
Analysis Techniques. 2.2. Algorithms for the 3SUM Problem. 2.3. Reductions.
2.4. Exact Analysis. 2.5. Notes and References. Exercises. 3. Data
Structures. 3.1. Abstract Data Types and Data Structures. 3.2. Arrays,
Linked Lists and Sets. 3.3. Stacks and Queues. 3.4. Priority Queues and
Heaps. 3.6. Hash Tables. 3.7. Notes and References. Exercises. 4.
Divide-and-Conquer Algorithms. 4.1. Recurrence Relations. 4.2. The Master
Theorem. 4.3. Divide-and-Conquer Design Strategy. 4.4. Divide-and-Conquer
Recurrence Relations. 4.5. Binary Search. 4.6. Non-dominated Points. 4.7.
Stock Profits. 4.8. Closest Pair. 4.9. Multiprecision Multiplication. 4.10.
Modular Exponentiation. 4.11. Matrix Multiplication. 4.12. QuickSort. 4.13.
Selection and Median. 4.14. Notes and References. Exercises. 5. Greedy
Algorithms. 5.1. Optimization Problems. 5.2. Greedy Design Strategy. 5.3.
Interval Selection. 5.4. Interval Coloring. 5.5. Wireless Access Points.
5.6. A House Construction Problem. 5.7. Knapsack. 5.8. Coin Changing. 5.9.
Multiprocessor Scheduling. 5.10. Stable Matching. 5.11. Notes and
References. Exercises. 6 Dynamic Programming Algorithms. 6.1. Fibonacci
Numbers. 6.2. Design Strategy. 6.3. Treasure Hunt. 6.4. 0-1 Knapsack. 6.5.
Rod Cutting. 6.6. Coin Changing. 6.7. Longest Common Subsequence. 6.8.
Minimum Length Triangulation. 6.9. Memoization. 6.10. Notes and References.
Exercises. 7. Graph Algorithms. 7.1. Graphs. 7.2. Breadth-first Search.
7.3. Directed Graphs. 7.4. Depth-first Search. 7.5. Strongly Connected
Components. 7.6. Eulerian Circuits. 7.7. Minimum Spanning Trees. 7.8.
Single Source Shortest Paths. 7.9. All-Pairs Shortest Paths. 7.10. Notes
and References. Exercises. 8. Backtracking Algorithms. 8.1. Introduction.
8.2. Generating all Cliques. 8.3. Sudoku. 8.4. Pruning and Bounding
Functions. 8.5. 0-1 Knapsack Problem. 8.6. Traveling Salesperson Problem.
8.7. Branch-and-bound. 8.8. Notes and References. Exercises. 9.
Intractability and Undecidability. 9.1. Decision Problems and the
Complexity Class P. 9.2. Polynomial-time Turing Reductions. 9.3. The
Complexity Class NP. 9.4. Polynomial Transformations. 9.5. NP-completeness.
9.6. Proving Problems NP-complete. 9.7. NP-hard Problems. 9.8.
Approximation Algorithms. 9.9. Undecidability. 9.10. The Complexity Class
EXPTIME. 9.11. Notes and References. Exercises. Bibliography. Index.
1. Introduction and Mathematical Background. 1.1. Algorithms and Programs.
1.2. Definitions and Terminology. 1.3. Order Notation. 1.4. Mathematical
Formulae. 1.5. Probability Theory and Random Variables. 1.6. Notes and
References. Exercises. 2. Algorithm Analysis and Reductions. 2.1. Loop
Analysis Techniques. 2.2. Algorithms for the 3SUM Problem. 2.3. Reductions.
2.4. Exact Analysis. 2.5. Notes and References. Exercises. 3. Data
Structures. 3.1. Abstract Data Types and Data Structures. 3.2. Arrays,
Linked Lists and Sets. 3.3. Stacks and Queues. 3.4. Priority Queues and
Heaps. 3.6. Hash Tables. 3.7. Notes and References. Exercises. 4.
Divide-and-Conquer Algorithms. 4.1. Recurrence Relations. 4.2. The Master
Theorem. 4.3. Divide-and-Conquer Design Strategy. 4.4. Divide-and-Conquer
Recurrence Relations. 4.5. Binary Search. 4.6. Non-dominated Points. 4.7.
Stock Profits. 4.8. Closest Pair. 4.9. Multiprecision Multiplication. 4.10.
Modular Exponentiation. 4.11. Matrix Multiplication. 4.12. QuickSort. 4.13.
Selection and Median. 4.14. Notes and References. Exercises. 5. Greedy
Algorithms. 5.1. Optimization Problems. 5.2. Greedy Design Strategy. 5.3.
Interval Selection. 5.4. Interval Coloring. 5.5. Wireless Access Points.
5.6. A House Construction Problem. 5.7. Knapsack. 5.8. Coin Changing. 5.9.
Multiprocessor Scheduling. 5.10. Stable Matching. 5.11. Notes and
References. Exercises. 6 Dynamic Programming Algorithms. 6.1. Fibonacci
Numbers. 6.2. Design Strategy. 6.3. Treasure Hunt. 6.4. 0-1 Knapsack. 6.5.
Rod Cutting. 6.6. Coin Changing. 6.7. Longest Common Subsequence. 6.8.
Minimum Length Triangulation. 6.9. Memoization. 6.10. Notes and References.
Exercises. 7. Graph Algorithms. 7.1. Graphs. 7.2. Breadth-first Search.
7.3. Directed Graphs. 7.4. Depth-first Search. 7.5. Strongly Connected
Components. 7.6. Eulerian Circuits. 7.7. Minimum Spanning Trees. 7.8.
Single Source Shortest Paths. 7.9. All-Pairs Shortest Paths. 7.10. Notes
and References. Exercises. 8. Backtracking Algorithms. 8.1. Introduction.
8.2. Generating all Cliques. 8.3. Sudoku. 8.4. Pruning and Bounding
Functions. 8.5. 0-1 Knapsack Problem. 8.6. Traveling Salesperson Problem.
8.7. Branch-and-bound. 8.8. Notes and References. Exercises. 9.
Intractability and Undecidability. 9.1. Decision Problems and the
Complexity Class P. 9.2. Polynomial-time Turing Reductions. 9.3. The
Complexity Class NP. 9.4. Polynomial Transformations. 9.5. NP-completeness.
9.6. Proving Problems NP-complete. 9.7. NP-hard Problems. 9.8.
Approximation Algorithms. 9.9. Undecidability. 9.10. The Complexity Class
EXPTIME. 9.11. Notes and References. Exercises. Bibliography. Index.
1.2. Definitions and Terminology. 1.3. Order Notation. 1.4. Mathematical
Formulae. 1.5. Probability Theory and Random Variables. 1.6. Notes and
References. Exercises. 2. Algorithm Analysis and Reductions. 2.1. Loop
Analysis Techniques. 2.2. Algorithms for the 3SUM Problem. 2.3. Reductions.
2.4. Exact Analysis. 2.5. Notes and References. Exercises. 3. Data
Structures. 3.1. Abstract Data Types and Data Structures. 3.2. Arrays,
Linked Lists and Sets. 3.3. Stacks and Queues. 3.4. Priority Queues and
Heaps. 3.6. Hash Tables. 3.7. Notes and References. Exercises. 4.
Divide-and-Conquer Algorithms. 4.1. Recurrence Relations. 4.2. The Master
Theorem. 4.3. Divide-and-Conquer Design Strategy. 4.4. Divide-and-Conquer
Recurrence Relations. 4.5. Binary Search. 4.6. Non-dominated Points. 4.7.
Stock Profits. 4.8. Closest Pair. 4.9. Multiprecision Multiplication. 4.10.
Modular Exponentiation. 4.11. Matrix Multiplication. 4.12. QuickSort. 4.13.
Selection and Median. 4.14. Notes and References. Exercises. 5. Greedy
Algorithms. 5.1. Optimization Problems. 5.2. Greedy Design Strategy. 5.3.
Interval Selection. 5.4. Interval Coloring. 5.5. Wireless Access Points.
5.6. A House Construction Problem. 5.7. Knapsack. 5.8. Coin Changing. 5.9.
Multiprocessor Scheduling. 5.10. Stable Matching. 5.11. Notes and
References. Exercises. 6 Dynamic Programming Algorithms. 6.1. Fibonacci
Numbers. 6.2. Design Strategy. 6.3. Treasure Hunt. 6.4. 0-1 Knapsack. 6.5.
Rod Cutting. 6.6. Coin Changing. 6.7. Longest Common Subsequence. 6.8.
Minimum Length Triangulation. 6.9. Memoization. 6.10. Notes and References.
Exercises. 7. Graph Algorithms. 7.1. Graphs. 7.2. Breadth-first Search.
7.3. Directed Graphs. 7.4. Depth-first Search. 7.5. Strongly Connected
Components. 7.6. Eulerian Circuits. 7.7. Minimum Spanning Trees. 7.8.
Single Source Shortest Paths. 7.9. All-Pairs Shortest Paths. 7.10. Notes
and References. Exercises. 8. Backtracking Algorithms. 8.1. Introduction.
8.2. Generating all Cliques. 8.3. Sudoku. 8.4. Pruning and Bounding
Functions. 8.5. 0-1 Knapsack Problem. 8.6. Traveling Salesperson Problem.
8.7. Branch-and-bound. 8.8. Notes and References. Exercises. 9.
Intractability and Undecidability. 9.1. Decision Problems and the
Complexity Class P. 9.2. Polynomial-time Turing Reductions. 9.3. The
Complexity Class NP. 9.4. Polynomial Transformations. 9.5. NP-completeness.
9.6. Proving Problems NP-complete. 9.7. NP-hard Problems. 9.8.
Approximation Algorithms. 9.9. Undecidability. 9.10. The Complexity Class
EXPTIME. 9.11. Notes and References. Exercises. Bibliography. Index.