61,95 €
61,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
31 °P sammeln
61,95 €
61,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
31 °P sammeln
Als Download kaufen
61,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
31 °P sammeln
Jetzt verschenken
61,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
31 °P sammeln
  • Format: PDF

This reference describes a novel method in multi-objective control system design with examples drawn from aerospace engineering and a free MATLAB® toolbox for easy implementation. It unites two well-known areas of multi-objective control system design-quasi Linear Parameter Varying (LPV) models and the Linear Matrix Inequality (LMI) method. The book introduces a methodology to automatically generate from any given quasi LPV model a set of invariant, canonical, and convex poly topic representations that are readily executable for LMI-based system control design.

Produktbeschreibung
This reference describes a novel method in multi-objective control system design with examples drawn from aerospace engineering and a free MATLAB® toolbox for easy implementation. It unites two well-known areas of multi-objective control system design-quasi Linear Parameter Varying (LPV) models and the Linear Matrix Inequality (LMI) method. The book introduces a methodology to automatically generate from any given quasi LPV model a set of invariant, canonical, and convex poly topic representations that are readily executable for LMI-based system control design.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Peter Beranyi, Ph.D, D. Sc, is head of the Computer and Automation Research Institute of the Hungarian Academy of Sciences and a professor at the Budapest University of Technology and Economics. He received his D.Sc in Informatics, his Ph.D. in Electrical Engineering, his M.Sc. in Education of Engineering Science, and his M.Sc. in Electrical Engineering at Budapest University of Technology and Economics. His research interest is on LPV- and LMI-based control design, modeling based on TP functions, fuzzy modeling, fuzzy rule interpolation, and calculation complexity reduction of various model types. He has written 48 journal papers for 262 publications.

Yeung Yam, is a professor in the Department of Mechanical and Automation Engineering at the Chinese University of Hong Kong. He obtained his B.Sc. from the Chinese University of Hong Kong, his M.Sc. from the University of Akron, Ohio, USA and his M.Sc., D.Sc. from the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. He has published over 100 technical papers in various areas of research, including human skill acquisition and analysis, dynamics modeling, control, system identification, fuzzy approximation, and intelligent and autonomous systems.

Peter Valarki, is a professor at the Budapest University of Technology and Economics. He graduated in mechanical engineering in 1971 at the Faculty of Transportation Engineering at the Technical University of Budapest, now the Budapest University of Technology and Economics. He also earned his Ph.D., his C.Sc. and his D.Sc. He is a founding member of the Hungarian Academy of Engineering and the main topics of his research field are the stochastic control theory, statistical system identification, and computational intelligency. He is the co-author of 10 books and more than 250 other scientific and technical publications.