Test Fraud (eBook, ePUB)
Statistical Detection and Methodology
Redaktion: Kingston, Neal; Clark, Amy
Alle Infos zum eBook verschenken
Test Fraud (eBook, ePUB)
Statistical Detection and Methodology
Redaktion: Kingston, Neal; Clark, Amy
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Recent reports of widespread problems with state student accountability tests and teacher certification testing have raised questions about the very validity of assessment programs. Few books outline the statistical procedures used for detecting various types of potential test fraud and the associated research findings. This edited volume expands on the current literature base by including examples of detailed research findings arrived at by statistical methodology, and provides a synthesis of the current state of the art with regard to the statistical detection of testing infidelity, particularly for large-scale assessments. …mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 1.69MB
- Test Fraud (eBook, PDF)39,95 €
- Barbara M. ByrneStructural Equation Modeling With EQS (eBook, ePUB)61,95 €
- Heidi L. AndradeUsing Formative Assessment to Enhance Learning, Achievement, and Academic Self-Regulation (eBook, ePUB)30,95 €
- Audrey Amrein-BeardsleyRethinking Value-Added Models in Education (eBook, ePUB)45,95 €
- Treatment Fidelity in Studies of Educational Intervention (eBook, ePUB)49,95 €
- Alyson Leah LavigneTeacher and Student Evaluation (eBook, ePUB)42,95 €
- Generalizing from Educational Research (eBook, ePUB)51,95 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 284
- Erscheinungstermin: 27. Juni 2014
- Englisch
- ISBN-13: 9781134650675
- Artikelnr.: 41153032
- Verlag: Taylor & Francis
- Seitenzahl: 284
- Erscheinungstermin: 27. Juni 2014
- Englisch
- ISBN-13: 9781134650675
- Artikelnr.: 41153032
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
on Test Fraud Detection and Prevention Amy Clark and Neal Kingston 3.
Cheating: Some Ways to Detect it Badly Howard Wainer Part 1: Similarities
in Responses 4. Relationships of Examinee Pair Characteristics and Item
Response Similarity Jeff Allen 5. A Parametric Approach to Detect a
Disproportionate Number of Identical Item Responses on a Test Leonardo S.
Sotaridona, Arianto Wibowo, and Irene Hendrawan 6. Detection of
Non-Independent Test Taking by Similarity Analysis Dennis Maynes Part 2:
Macro Level Cheating 7. Local Outlier Detection in Data Forensics: Data
Mining Approach to Flag Unusual Schools Mayuko Simon 8. Macro Level Systems
of Statistical Evidence Indicative of Cheating Michael Chajewski,
YoungKoung Kim, Judit Antal, and Kevin Sweeney 9. A Bayesian Hierarchical
Linear Modeling Approach for Detecting Cheating and Aberrance William
Skorupski and Karla Egan Part 3: Answer Changing Behavior 10. Patterns of
Erasure Behavior for a Large-Scale Assessment Andrew A. Mroch, Yang Lu,
Chi-Yu Huang, and Deborah J. Harris 11. AYP consequences and Erasure
Behavior Vincent Primoli 12. An Exploration of Answer Changing Behavior on
a Computer-Based High-Stakes Achievement Test Gail C. Tiemann and Neal M.
Kingston Part 4: Detection of Aberrant Responses 13. Identifying
Non-Effortful Student Behavior on Adaptive Tests: Implications for Test
Fraud Detection Steven L. Wise, Lingling Ma, and Robert A. Theaker 14. A
Method for Measuring Performance Inconsistency by Using Score Differences
Dennis Maynes Part 5: Multiple Methods 15. Data Forensics: A
Compare-and-Contrast Analysis of Multiple Methods Christie Plackner and
Vincent Primoli 16. Using Multiple Methods to Detect Aberrant Data Karla
Egan and Jessalyn Smith 17. Test Security for Multistage Tests: A Quality
Control Perspective Charles Lewis, Yi-Hsuan Lee and Alina A. von Davier
on Test Fraud Detection and Prevention Amy Clark and Neal Kingston 3.
Cheating: Some Ways to Detect it Badly Howard Wainer Part 1: Similarities
in Responses 4. Relationships of Examinee Pair Characteristics and Item
Response Similarity Jeff Allen 5. A Parametric Approach to Detect a
Disproportionate Number of Identical Item Responses on a Test Leonardo S.
Sotaridona, Arianto Wibowo, and Irene Hendrawan 6. Detection of
Non-Independent Test Taking by Similarity Analysis Dennis Maynes Part 2:
Macro Level Cheating 7. Local Outlier Detection in Data Forensics: Data
Mining Approach to Flag Unusual Schools Mayuko Simon 8. Macro Level Systems
of Statistical Evidence Indicative of Cheating Michael Chajewski,
YoungKoung Kim, Judit Antal, and Kevin Sweeney 9. A Bayesian Hierarchical
Linear Modeling Approach for Detecting Cheating and Aberrance William
Skorupski and Karla Egan Part 3: Answer Changing Behavior 10. Patterns of
Erasure Behavior for a Large-Scale Assessment Andrew A. Mroch, Yang Lu,
Chi-Yu Huang, and Deborah J. Harris 11. AYP consequences and Erasure
Behavior Vincent Primoli 12. An Exploration of Answer Changing Behavior on
a Computer-Based High-Stakes Achievement Test Gail C. Tiemann and Neal M.
Kingston Part 4: Detection of Aberrant Responses 13. Identifying
Non-Effortful Student Behavior on Adaptive Tests: Implications for Test
Fraud Detection Steven L. Wise, Lingling Ma, and Robert A. Theaker 14. A
Method for Measuring Performance Inconsistency by Using Score Differences
Dennis Maynes Part 5: Multiple Methods 15. Data Forensics: A
Compare-and-Contrast Analysis of Multiple Methods Christie Plackner and
Vincent Primoli 16. Using Multiple Methods to Detect Aberrant Data Karla
Egan and Jessalyn Smith 17. Test Security for Multistage Tests: A Quality
Control Perspective Charles Lewis, Yi-Hsuan Lee and Alina A. von Davier