John Atkinson-Abutridy
Text Analytics (eBook, PDF)
An Introduction to the Science and Applications of Unstructured Information Analysis
47,95 €
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
47,95 €
Als Download kaufen
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
24 °P sammeln
John Atkinson-Abutridy
Text Analytics (eBook, PDF)
An Introduction to the Science and Applications of Unstructured Information Analysis
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Text Analytics: An Introduction to the Science and Applications of Unstructured Information Analysis is a concise and accessible introduction to the science and applications of text analytics (or text mining), which enables automatic knowledge discovery from unstructured information sources, both for industrial and academic purposes.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 11.11MB
Andere Kunden interessierten sich auch für
- John Atkinson-AbutridyText Analytics (eBook, ePUB)47,95 €
- Richard J. RoigerJust Enough R! (eBook, PDF)42,95 €
- Dothang TruongData Science and Machine Learning for Non-Programmers (eBook, PDF)47,95 €
- Knowledge Guided Machine Learning (eBook, PDF)47,95 €
- Anoop KunchukuttanMachine Translation and Transliteration involving Related, Low-resource Languages (eBook, PDF)57,95 €
- Marco ScutariThe Pragmatic Programmer for Machine Learning (eBook, PDF)79,95 €
- Joao GamaKnowledge Discovery from Data Streams (eBook, PDF)94,95 €
-
-
-
Text Analytics: An Introduction to the Science and Applications of Unstructured Information Analysis is a concise and accessible introduction to the science and applications of text analytics (or text mining), which enables automatic knowledge discovery from unstructured information sources, both for industrial and academic purposes.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 258
- Erscheinungstermin: 28. April 2022
- Englisch
- ISBN-13: 9781000581041
- Artikelnr.: 63502972
- Verlag: Taylor & Francis
- Seitenzahl: 258
- Erscheinungstermin: 28. April 2022
- Englisch
- ISBN-13: 9781000581041
- Artikelnr.: 63502972
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
John Atkinson-Abutridy has been a university professor and researcher over the last 25 years. He received a PhD in Artificial Intelligence (AI) from the University of Edinburgh (UK), and has led scientific and technological projects both at national and international levels on several AI topics including Natural-Language Processing, Machine Learning, Evolutionary Computation, and Text Mining, and has published almost 100 peer review scientific articles in journals and conferences. Furthermore, he has been AI consultant and transferred some intelligent system technologies into the industry. Dr. Atkinson-Abutridy has been a visiting researcher/professor in several universities and research centers worldwide such as the University of Cambridge (UK), MIT (USA), IBM T.J. Watson Labs (USA), and INRIA (France). He is also a professional member of the AAAI and a senior member of the ACM.
1 TEXT ANALYTICS. 1.1 INTRODUCTION 1.2 TEXT MINING AND TEXT ANALYTICS 1.3
TASKS AND APPLICATIONS 1.4 THE TEXT ANALYTICS PROCESS 1.5 SUMMARY 1.6
QUESTIONS 2 NATURAL-LANGUAGE PROCESSING 2.1 INTRODUCTION 2.2 THE SCOPE OF
NATURAL-LANGUAGE PROCESSING 2.3 NLP LEVELS AND TASKS 2.3.1 Phonology 2.3.2
Morphology 2.3.3 Lexicon 2.3.4 Syntax 2.3.5 Semantic 2.3.6 Reasoning and
Pragmatics 2.1 SUMMARY 2.2 EXERCISES 2.2.1 Morphological Analysis 2.2.2
Lexical Analysis 2.2.3 Syntactic Analysis 3 INFORMATION EXTRACTION 3.1
INTRODUCTION 3.2 RULE-BASED INFORMATION EXTRACTION 3.3 NAMED-ENTITY
RECOGNITION 3.3.1 N-Gram Models 3.4 RELATION EXTRACTION 3.5 EVALUATION 3.1
SUMMARY 3.2 EXERCISE 3.2.1 Regular Expressions 3.2.2 Named-Entity
Recognition 4 DOCUMENT REPRESENTATION 4.1 INTRODUCTION 4.2 DOCUMENT
INDEXING 4.3 VECTOR SPACE MODELS 4.3.1 Boolean Representation Model 4.3.2
Term Frequency Model 4.3.3 Inverse Document Frequency Model 4.1 SUMMARY 4.2
EXERCISES 4.2.1 TFxIDF Representation Model 5 ASSOCIATION RULES MINING 5.
INTRODUCTION 5.2 ASSOCIATION PATTERNS 5.3 EVALUATION 5.3.1 Support
5.3.2Confidence 5.3.3 Lift 5.4 ASSOCIATION RULES GENERATION 5.1 SUMMARY 5.2
EXERCISES 5.2.1 Extraction of Association Rules 6 CORPUS-BASED SEMANTIC
ANALYSIS 6.1 INTRODUCTION 6.2 CORPUS-BASED SEMANTIC ANALYSIS 6.3 LATENT
SEMANTIC ANALYSIS 6.3.1 Creating Vectors with LSA 6.4 WORD2VEC 6.4.1
Embedding Learning 6.4.2 Prediction and Embeddings Interpretation 6.1
SUMMARY 6.2 EXERCISES 6.2.1 Latent Semantic Analysis 6.2. Word Embedding
with Word2Vec 7 DOCUMENT CLUSTERING 7.1 INTRODUCTION 7.2 DOCUMENT
CLUSTERING 7.3K-MEANS CLUSTERING 7.4 SELF-ORGANIZING MAP 7.4.1Topological
Maps Learning 7.1 SUMMARY 7.2 EXERCISES 7.2.1 K-means Clustering 7.2.2
Self-Organizing Maps 8 TOPIC MODELING 8.1 INTRODUCTIO 8.2TOPIC MODELING 8.3
LATENT DIRICHLET ALLOCATION 8.4 EVALUATION 8.1 SUMMARY 8.2 EXERCISES 8.2.1
Modeling Topics with LDA 9 DOCUMENT CATEGORIZATION 9.1INTRODUCTION 9.2
CATEGORIZATION MODELS 9.3 BAYESIAN TEXT CATEGORIZATION 9.4 MAXIMUM ENTROPY
CATEGORIZATION 9.5 EVALUATION 9.1 SUMMARY 9.2 EXERCISES 9.2.1 Naïve Bayes
Categorization 9.2.2 MaxEnt Categorization
TASKS AND APPLICATIONS 1.4 THE TEXT ANALYTICS PROCESS 1.5 SUMMARY 1.6
QUESTIONS 2 NATURAL-LANGUAGE PROCESSING 2.1 INTRODUCTION 2.2 THE SCOPE OF
NATURAL-LANGUAGE PROCESSING 2.3 NLP LEVELS AND TASKS 2.3.1 Phonology 2.3.2
Morphology 2.3.3 Lexicon 2.3.4 Syntax 2.3.5 Semantic 2.3.6 Reasoning and
Pragmatics 2.1 SUMMARY 2.2 EXERCISES 2.2.1 Morphological Analysis 2.2.2
Lexical Analysis 2.2.3 Syntactic Analysis 3 INFORMATION EXTRACTION 3.1
INTRODUCTION 3.2 RULE-BASED INFORMATION EXTRACTION 3.3 NAMED-ENTITY
RECOGNITION 3.3.1 N-Gram Models 3.4 RELATION EXTRACTION 3.5 EVALUATION 3.1
SUMMARY 3.2 EXERCISE 3.2.1 Regular Expressions 3.2.2 Named-Entity
Recognition 4 DOCUMENT REPRESENTATION 4.1 INTRODUCTION 4.2 DOCUMENT
INDEXING 4.3 VECTOR SPACE MODELS 4.3.1 Boolean Representation Model 4.3.2
Term Frequency Model 4.3.3 Inverse Document Frequency Model 4.1 SUMMARY 4.2
EXERCISES 4.2.1 TFxIDF Representation Model 5 ASSOCIATION RULES MINING 5.
INTRODUCTION 5.2 ASSOCIATION PATTERNS 5.3 EVALUATION 5.3.1 Support
5.3.2Confidence 5.3.3 Lift 5.4 ASSOCIATION RULES GENERATION 5.1 SUMMARY 5.2
EXERCISES 5.2.1 Extraction of Association Rules 6 CORPUS-BASED SEMANTIC
ANALYSIS 6.1 INTRODUCTION 6.2 CORPUS-BASED SEMANTIC ANALYSIS 6.3 LATENT
SEMANTIC ANALYSIS 6.3.1 Creating Vectors with LSA 6.4 WORD2VEC 6.4.1
Embedding Learning 6.4.2 Prediction and Embeddings Interpretation 6.1
SUMMARY 6.2 EXERCISES 6.2.1 Latent Semantic Analysis 6.2. Word Embedding
with Word2Vec 7 DOCUMENT CLUSTERING 7.1 INTRODUCTION 7.2 DOCUMENT
CLUSTERING 7.3K-MEANS CLUSTERING 7.4 SELF-ORGANIZING MAP 7.4.1Topological
Maps Learning 7.1 SUMMARY 7.2 EXERCISES 7.2.1 K-means Clustering 7.2.2
Self-Organizing Maps 8 TOPIC MODELING 8.1 INTRODUCTIO 8.2TOPIC MODELING 8.3
LATENT DIRICHLET ALLOCATION 8.4 EVALUATION 8.1 SUMMARY 8.2 EXERCISES 8.2.1
Modeling Topics with LDA 9 DOCUMENT CATEGORIZATION 9.1INTRODUCTION 9.2
CATEGORIZATION MODELS 9.3 BAYESIAN TEXT CATEGORIZATION 9.4 MAXIMUM ENTROPY
CATEGORIZATION 9.5 EVALUATION 9.1 SUMMARY 9.2 EXERCISES 9.2.1 Naïve Bayes
Categorization 9.2.2 MaxEnt Categorization
1 TEXT ANALYTICS. 1.1 INTRODUCTION 1.2 TEXT MINING AND TEXT ANALYTICS 1.3
TASKS AND APPLICATIONS 1.4 THE TEXT ANALYTICS PROCESS 1.5 SUMMARY 1.6
QUESTIONS 2 NATURAL-LANGUAGE PROCESSING 2.1 INTRODUCTION 2.2 THE SCOPE OF
NATURAL-LANGUAGE PROCESSING 2.3 NLP LEVELS AND TASKS 2.3.1 Phonology 2.3.2
Morphology 2.3.3 Lexicon 2.3.4 Syntax 2.3.5 Semantic 2.3.6 Reasoning and
Pragmatics 2.1 SUMMARY 2.2 EXERCISES 2.2.1 Morphological Analysis 2.2.2
Lexical Analysis 2.2.3 Syntactic Analysis 3 INFORMATION EXTRACTION 3.1
INTRODUCTION 3.2 RULE-BASED INFORMATION EXTRACTION 3.3 NAMED-ENTITY
RECOGNITION 3.3.1 N-Gram Models 3.4 RELATION EXTRACTION 3.5 EVALUATION 3.1
SUMMARY 3.2 EXERCISE 3.2.1 Regular Expressions 3.2.2 Named-Entity
Recognition 4 DOCUMENT REPRESENTATION 4.1 INTRODUCTION 4.2 DOCUMENT
INDEXING 4.3 VECTOR SPACE MODELS 4.3.1 Boolean Representation Model 4.3.2
Term Frequency Model 4.3.3 Inverse Document Frequency Model 4.1 SUMMARY 4.2
EXERCISES 4.2.1 TFxIDF Representation Model 5 ASSOCIATION RULES MINING 5.
INTRODUCTION 5.2 ASSOCIATION PATTERNS 5.3 EVALUATION 5.3.1 Support
5.3.2Confidence 5.3.3 Lift 5.4 ASSOCIATION RULES GENERATION 5.1 SUMMARY 5.2
EXERCISES 5.2.1 Extraction of Association Rules 6 CORPUS-BASED SEMANTIC
ANALYSIS 6.1 INTRODUCTION 6.2 CORPUS-BASED SEMANTIC ANALYSIS 6.3 LATENT
SEMANTIC ANALYSIS 6.3.1 Creating Vectors with LSA 6.4 WORD2VEC 6.4.1
Embedding Learning 6.4.2 Prediction and Embeddings Interpretation 6.1
SUMMARY 6.2 EXERCISES 6.2.1 Latent Semantic Analysis 6.2. Word Embedding
with Word2Vec 7 DOCUMENT CLUSTERING 7.1 INTRODUCTION 7.2 DOCUMENT
CLUSTERING 7.3K-MEANS CLUSTERING 7.4 SELF-ORGANIZING MAP 7.4.1Topological
Maps Learning 7.1 SUMMARY 7.2 EXERCISES 7.2.1 K-means Clustering 7.2.2
Self-Organizing Maps 8 TOPIC MODELING 8.1 INTRODUCTIO 8.2TOPIC MODELING 8.3
LATENT DIRICHLET ALLOCATION 8.4 EVALUATION 8.1 SUMMARY 8.2 EXERCISES 8.2.1
Modeling Topics with LDA 9 DOCUMENT CATEGORIZATION 9.1INTRODUCTION 9.2
CATEGORIZATION MODELS 9.3 BAYESIAN TEXT CATEGORIZATION 9.4 MAXIMUM ENTROPY
CATEGORIZATION 9.5 EVALUATION 9.1 SUMMARY 9.2 EXERCISES 9.2.1 Naïve Bayes
Categorization 9.2.2 MaxEnt Categorization
TASKS AND APPLICATIONS 1.4 THE TEXT ANALYTICS PROCESS 1.5 SUMMARY 1.6
QUESTIONS 2 NATURAL-LANGUAGE PROCESSING 2.1 INTRODUCTION 2.2 THE SCOPE OF
NATURAL-LANGUAGE PROCESSING 2.3 NLP LEVELS AND TASKS 2.3.1 Phonology 2.3.2
Morphology 2.3.3 Lexicon 2.3.4 Syntax 2.3.5 Semantic 2.3.6 Reasoning and
Pragmatics 2.1 SUMMARY 2.2 EXERCISES 2.2.1 Morphological Analysis 2.2.2
Lexical Analysis 2.2.3 Syntactic Analysis 3 INFORMATION EXTRACTION 3.1
INTRODUCTION 3.2 RULE-BASED INFORMATION EXTRACTION 3.3 NAMED-ENTITY
RECOGNITION 3.3.1 N-Gram Models 3.4 RELATION EXTRACTION 3.5 EVALUATION 3.1
SUMMARY 3.2 EXERCISE 3.2.1 Regular Expressions 3.2.2 Named-Entity
Recognition 4 DOCUMENT REPRESENTATION 4.1 INTRODUCTION 4.2 DOCUMENT
INDEXING 4.3 VECTOR SPACE MODELS 4.3.1 Boolean Representation Model 4.3.2
Term Frequency Model 4.3.3 Inverse Document Frequency Model 4.1 SUMMARY 4.2
EXERCISES 4.2.1 TFxIDF Representation Model 5 ASSOCIATION RULES MINING 5.
INTRODUCTION 5.2 ASSOCIATION PATTERNS 5.3 EVALUATION 5.3.1 Support
5.3.2Confidence 5.3.3 Lift 5.4 ASSOCIATION RULES GENERATION 5.1 SUMMARY 5.2
EXERCISES 5.2.1 Extraction of Association Rules 6 CORPUS-BASED SEMANTIC
ANALYSIS 6.1 INTRODUCTION 6.2 CORPUS-BASED SEMANTIC ANALYSIS 6.3 LATENT
SEMANTIC ANALYSIS 6.3.1 Creating Vectors with LSA 6.4 WORD2VEC 6.4.1
Embedding Learning 6.4.2 Prediction and Embeddings Interpretation 6.1
SUMMARY 6.2 EXERCISES 6.2.1 Latent Semantic Analysis 6.2. Word Embedding
with Word2Vec 7 DOCUMENT CLUSTERING 7.1 INTRODUCTION 7.2 DOCUMENT
CLUSTERING 7.3K-MEANS CLUSTERING 7.4 SELF-ORGANIZING MAP 7.4.1Topological
Maps Learning 7.1 SUMMARY 7.2 EXERCISES 7.2.1 K-means Clustering 7.2.2
Self-Organizing Maps 8 TOPIC MODELING 8.1 INTRODUCTIO 8.2TOPIC MODELING 8.3
LATENT DIRICHLET ALLOCATION 8.4 EVALUATION 8.1 SUMMARY 8.2 EXERCISES 8.2.1
Modeling Topics with LDA 9 DOCUMENT CATEGORIZATION 9.1INTRODUCTION 9.2
CATEGORIZATION MODELS 9.3 BAYESIAN TEXT CATEGORIZATION 9.4 MAXIMUM ENTROPY
CATEGORIZATION 9.5 EVALUATION 9.1 SUMMARY 9.2 EXERCISES 9.2.1 Naïve Bayes
Categorization 9.2.2 MaxEnt Categorization