Jan Van Neerven
The Asymptotic Behaviour of Semigroups of Linear Operators (eBook, PDF)
73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
73,95 €
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
37 °P sammeln
Jan Van Neerven
The Asymptotic Behaviour of Semigroups of Linear Operators (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 19.71MB
Andere Kunden interessierten sich auch für
- Evolution Equations, Semigroups and Functional Analysis (eBook, PDF)40,95 €
- András BátkaiPositive Operator Semigroups (eBook, PDF)40,95 €
- Semigroups of Operators -Theory and Applications (eBook, PDF)73,95 €
- -23%11Eduard Yu. Emel'yanovNon-spectral Asymptotic Analysis of One-Parameter Operator Semigroups (eBook, PDF)40,95 €
- Semigroups of Operators - Theory and Applications (eBook, PDF)129,95 €
- The State Space Method (eBook, PDF)73,95 €
- Advances in Pseudo-Differential Operators (eBook, PDF)73,95 €
-
-
-
Produktdetails
- Verlag: Springer Basel
- Seitenzahl: 241
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783034892063
- Artikelnr.: 53171309
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1. Spectral bound and growth bound.- 1.1. C0-semigroups and the abstract Cauchy problem.- 1.2. The spectral bound and growth bound of a semigroup.- 1.3. The Laplace transform and its complex inversion.- 1.4. Positive semigroups.- Notes.- 2. Spectral mapping theorems.- 2.1. The spectral mapping theorem for the point spectrum.- 2.2. The spectral mapping theorems of Greiner and Gearhart.- 2.3. Eventually uniformly continuous semigroups.- 2.4. Groups of non-quasianalytic growth.- 2.5. Latushkin - Montgomery-Smith theory.- Notes.- 3. Uniform exponential stability.- 3.1. The theorem of Datko and Pazy.- 3.2. The theorem of Rolewicz.- 3.3. Characterization by convolutions.- 3.4. Characterization by almost periodic functions.- 3.5. Positive semigroups on Lp-spaces.- 3.6. The essential spectrum.- Notes Ill.- 4. Boundedness of the resolvent.- 4.1. The convexity theorem of Weis and Wrobel.- 4.2. Stability and boundedness of the resolvent.- 4.3. Individual stability in B-convex Banach spaces.- 4.4. Individual stability in spaces with the analytic RNP.- 4.5. Individual stability in arbitrary Banach spaces.- 4.6. Scalarly integrable semigroups.- Notes.- 5. Countability of the unitary spectrum.- 5.1. The stability theorem of Arendt, Batty, Lyubich, and V?.- 5.2. The Katznelson-Tzafriri theorem.- 5.3. The unbounded case.- 5.4. Sets of spectral synthesis.- 5.5. A quantitative stability theorem.- 5.6. A Tauberian theorem for the Laplace transform.- 5.7. The splitting theorem of Glicksberg and DeLeeuw.- Notes.- Append.- Al. Fractional powers.- A2. Interpolation theory.- A3. Banach lattices.- A4. Banach function spaces.- References.- Symbols.
1. Spectral bound and growth bound.- 1.1. C0-semigroups and the abstract Cauchy problem.- 1.2. The spectral bound and growth bound of a semigroup.- 1.3. The Laplace transform and its complex inversion.- 1.4. Positive semigroups.- Notes.- 2. Spectral mapping theorems.- 2.1. The spectral mapping theorem for the point spectrum.- 2.2. The spectral mapping theorems of Greiner and Gearhart.- 2.3. Eventually uniformly continuous semigroups.- 2.4. Groups of non-quasianalytic growth.- 2.5. Latushkin - Montgomery-Smith theory.- Notes.- 3. Uniform exponential stability.- 3.1. The theorem of Datko and Pazy.- 3.2. The theorem of Rolewicz.- 3.3. Characterization by convolutions.- 3.4. Characterization by almost periodic functions.- 3.5. Positive semigroups on Lp-spaces.- 3.6. The essential spectrum.- Notes Ill.- 4. Boundedness of the resolvent.- 4.1. The convexity theorem of Weis and Wrobel.- 4.2. Stability and boundedness of the resolvent.- 4.3. Individual stability in B-convex Banach spaces.- 4.4. Individual stability in spaces with the analytic RNP.- 4.5. Individual stability in arbitrary Banach spaces.- 4.6. Scalarly integrable semigroups.- Notes.- 5. Countability of the unitary spectrum.- 5.1. The stability theorem of Arendt, Batty, Lyubich, and V?.- 5.2. The Katznelson-Tzafriri theorem.- 5.3. The unbounded case.- 5.4. Sets of spectral synthesis.- 5.5. A quantitative stability theorem.- 5.6. A Tauberian theorem for the Laplace transform.- 5.7. The splitting theorem of Glicksberg and DeLeeuw.- Notes.- Append.- Al. Fractional powers.- A2. Interpolation theory.- A3. Banach lattices.- A4. Banach function spaces.- References.- Symbols.