The Chemistry of Membranes Used in Fuel Cells (eBook, PDF)
Degradation and Stabilization
Redaktion: Schlick, Shulamith
Alle Infos zum eBook verschenken
The Chemistry of Membranes Used in Fuel Cells (eBook, PDF)
Degradation and Stabilization
Redaktion: Schlick, Shulamith
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Examines the important topic of fuel cell science by way of combining membrane design, chemical degradation mechanisms, and stabilization strategies This book describes the mechanism of membrane degradation and stabilization, as well as the search for stable membranes that can be used in alkaline fuel cells. Arranged in ten chapters, the book presents detailed studies that can help readers understand the attack and degradation mechanisms of polymer membranes and mitigation strategies. Coverage starts from fundamentals and moves to different fuel cell membrane types and methods to profile and…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 10.67MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 304
- Erscheinungstermin: 29. Dezember 2018
- Englisch
- ISBN-13: 9781119196068
- Artikelnr.: 54188871
- Verlag: John Wiley & Sons
- Seitenzahl: 304
- Erscheinungstermin: 29. Dezember 2018
- Englisch
- ISBN-13: 9781119196068
- Artikelnr.: 54188871
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Radicals 62 3.3.3 Ce(III) as Competitor 68 3.4 Conclusions 70 Acknowledgments 72 References 72 4 Stabilization of Perfluorinated Membranes Using Ce3+ and Mn2+ Redox Scavengers: Mechanisms and Applications 75 Frank D. Coms, Shulamith Schlick, and Marek Danilczuk 4.1 Introduction 75 4.2 Oxidant Chemistry 76 4.3 Degradation Mechanisms of PFSA 79 4.4 Mitigation of Chemical Degradation by Redox Quenchers 81 4.4.1 Mitigation Mechanisms of Ce3+ and Mn2+ 82 4.4.1.1 Cerium Mitigation and Chain Scission Processes 89 4.4.2 ESR Spin Trapping Studies 89 4.4.3 Oxidative Stress and Ce3+ Mitigation 91 4.4.3.1 MEA Design 96 4.4.4 Cerium Distribution and Migration 97 4.4.5 CeO2 Mitigation 100 4.4.6 Synergistic Mitigation Strategies 101 4.5 Conclusions 103 Acknowledgments 104 References 104 5 Hydrocarbon Proton Exchange Membranes 107 Lorenz Gubler and Willem H. Koppenol 5.1 Introduction 107 5.2 Radical Intermediates in Fuel Cells 108 5.3 Hydrocarbon Membranes 114 5.4 Chemical Stabilization by Antioxidants 119 5.4.1 Regenerative Radical Scavenging in PFSA Membranes 119 5.4.2 Hydrocarbon Membranes Doped with Organic Antioxidants 121 5.4.3 Polymer(c)\Bound Antioxidants 122 5.5 The Challenge of Regeneration 125 5.5.1 Learnings from Mother Nature 125 5.5.2 Approaches for the Fuel Cell 126 5.6 Concluding Remarks 133 References 134 6 Stabilization of Perfluorinated Membranes Using Nanoparticle Additives 139 Guanxiong Wang, Javier Parrondo, and Vijay Ramani 6.1 Nanoparticle Additives as a Stabilizer for Perfluorinated Membranes 139 6.2 CeO2 and Modified CeO2 Nanoparticles as FRSs 141 6.3 Platinum(c)\Supported Ceria as FRS 152 6.4 Manganese Oxide and Manganese Oxide Composite as FRSs 154 6.5 Metal Nanoparticles as FRSs 160 6.6 Experimental Techniques for the Detection of Free Radicals and Measurement of the Membrane Degradation Rates 163 6.6.1 Fluoride Emission Rate 163 6.6.2 Fluorescence Spectroscopy as a Tool for the Detection and Quantification of Free Radical Degradation in PEMs 163 6.7 Conclusions 164 Acknowledgments 165 References 166 7 Degradation Mechanisms in Aquivion® Perfluorinated Membranes and Stabilization Strategies 171 Vincenzo Arcella, Luca Merlo, and Alessandro Ghielmi 7.1 Introduction 171 7.2 Properties of SSC Ionomers 173 7.3 Properties of Aquivion® Ionomers 173 7.4 The Need for High Stability of PFSA Membranes 177 7.5 PFSA Membrane Degradation in Fuel Cell 177 7.6 Generation of Radical Species in the Fuel Cell Environment 178 7.7 Degradation Studies on Aquivion® Membranes 181 7.8 Stabilization Procedures on Aquivion® Membranes 185 7.9 Conclusions 190 References 190 8 Anion Exchange Membranes: Stability and Synthetic Approach 195 Dongwon Shin, Chulsung Bae, and Yu Seung Kim 8.1 Introduction 195 8.2 Chemical Degradation Mechanisms 196 8.2.1 Degradation of Cationic Groups 196 8.2.1.1 Alkyl Ammoniums 196 8.2.1.2 N(c)\Based Cyclic Cations 199 8.2.1.3 Other Cationic Groups 202 8.2.2 Degradation of Polymer Backbones 204 8.2.2.1 Polyolefins 205 8.2.2.2 Polyaromatics 205 8.2.2.3 Polyacrylates 207 8.2.2.4 Polybenzimidazoles 208 8.2.2.5 Perfluorinated Polymers 208 8.3 Synthetic Approaches 210 8.3.1 Polyolefins 210 8.3.1.1 Polyethylene and Polypropylene 211 8.3.1.2 Polystyrene 212 8.3.1.3 Others 215 8.3.2 Polyaromatics 217 8.3.2.1 Cationic(c)\Group(c)\Tethered Poly(arylene)s 217 8.3.2.2 Poly(arylene)(c)\Containing Cationic Polymer Backbones 219 8.3.2.3 Multication(c)\Tethered Poly(arylene)s 219 8.3.3 Other Polymers 221 8.3.3.1 Polybenzimidazoles 221 8.3.3.2 Polynorbornenes 223 8.3.3.3 Perfluorinated Polymers 224 8.4 Conclusions 225 Acknowledgments 225 References 226 9 Profiling of Membrane Degradation Processes in a Fuel Cell by 2D Spectral-Spatial FTIR 229 Shulamith Schlick and Marek Danilczuk 9.1 Introduction 229 9.2 Optical Images of Nafion® Cross Sections 231 9.3 Line Scan Maps of the Membranes 232 9.4 FTIR Spectra of Nafion® MEAs 232 9.5 Abstraction of a Fluorine Atom on a Carbon in the Nafion® Main Chain by H
235 9.6 Conclusions 237 Acknowledgments 237 References 238 10 Quantum Mechanical Calculations of the Degradation in Perfluorinated Membranes Used in Fuel Cells 241 Ted H. Yu, Boris V. Merinov, and William A. Goddard III 10.1 Introduction 241 10.2 Computational Methods 244 10.3 Results and Discussion 244 10.3.1 Generation of Radicals 244 10.3.1.1 Hydroxyl Radicals 244 10.3.1.2 Hydrogen Radicals, H
247 10.3.1.3 Hydroperoxyl Radicals, HOO
249 10.3.2 Concentrated HO
Conditions versus Fuel Cell Conditions 249 10.3.3 Degradation under Concentrated HO
Conditions 249 10.3.3.1 R(c)
CF2H Polymer Main Chain Defect Initiation 249 10.3.3.2 R(c)
CF
TCF2 Polymer Main Chain Defect Initiation 250 10.3.3.3 R(c)
COOH Polymer Main Chain Defect Initiation 250 10.3.3.4 Propagating Polymer Main Chain Degradation 250 10.3.3.5 Side(c)\Chain Degradation 252 10.3.4 Degradation under Fuel Cell Conditions with Fuel Crossover 256 10.3.4.1 Polymer Main Chain End(c)\Group Initiation 256 10.3.4.2 Propagating Polymer Main Chain Degradation 256 10.3.4.3 Side(c)\Chain Degradation 257 10.3.5 Degradation under Fuel Cell Conditions without Crossover 259 10.3.5.1 Degradation at the Cathode without H2 Crossover 259 10.3.5.2 Degradation at the Anode without O2 Crossover 261 10.4 Summary 265 10.4.1 Concentrated HO
Conditions 265 10.4.2 Fuel Cell Conditions 265 10.4.2.1 Fuel Cell Conditions without Crossover at Cathode 266 10.4.2.2 Fuel Cell Conditions without Crossover at Anode 266 Acknowledgments 267 References 267 Index 271
Radicals 62 3.3.3 Ce(III) as Competitor 68 3.4 Conclusions 70 Acknowledgments 72 References 72 4 Stabilization of Perfluorinated Membranes Using Ce3+ and Mn2+ Redox Scavengers: Mechanisms and Applications 75 Frank D. Coms, Shulamith Schlick, and Marek Danilczuk 4.1 Introduction 75 4.2 Oxidant Chemistry 76 4.3 Degradation Mechanisms of PFSA 79 4.4 Mitigation of Chemical Degradation by Redox Quenchers 81 4.4.1 Mitigation Mechanisms of Ce3+ and Mn2+ 82 4.4.1.1 Cerium Mitigation and Chain Scission Processes 89 4.4.2 ESR Spin Trapping Studies 89 4.4.3 Oxidative Stress and Ce3+ Mitigation 91 4.4.3.1 MEA Design 96 4.4.4 Cerium Distribution and Migration 97 4.4.5 CeO2 Mitigation 100 4.4.6 Synergistic Mitigation Strategies 101 4.5 Conclusions 103 Acknowledgments 104 References 104 5 Hydrocarbon Proton Exchange Membranes 107 Lorenz Gubler and Willem H. Koppenol 5.1 Introduction 107 5.2 Radical Intermediates in Fuel Cells 108 5.3 Hydrocarbon Membranes 114 5.4 Chemical Stabilization by Antioxidants 119 5.4.1 Regenerative Radical Scavenging in PFSA Membranes 119 5.4.2 Hydrocarbon Membranes Doped with Organic Antioxidants 121 5.4.3 Polymer(c)\Bound Antioxidants 122 5.5 The Challenge of Regeneration 125 5.5.1 Learnings from Mother Nature 125 5.5.2 Approaches for the Fuel Cell 126 5.6 Concluding Remarks 133 References 134 6 Stabilization of Perfluorinated Membranes Using Nanoparticle Additives 139 Guanxiong Wang, Javier Parrondo, and Vijay Ramani 6.1 Nanoparticle Additives as a Stabilizer for Perfluorinated Membranes 139 6.2 CeO2 and Modified CeO2 Nanoparticles as FRSs 141 6.3 Platinum(c)\Supported Ceria as FRS 152 6.4 Manganese Oxide and Manganese Oxide Composite as FRSs 154 6.5 Metal Nanoparticles as FRSs 160 6.6 Experimental Techniques for the Detection of Free Radicals and Measurement of the Membrane Degradation Rates 163 6.6.1 Fluoride Emission Rate 163 6.6.2 Fluorescence Spectroscopy as a Tool for the Detection and Quantification of Free Radical Degradation in PEMs 163 6.7 Conclusions 164 Acknowledgments 165 References 166 7 Degradation Mechanisms in Aquivion® Perfluorinated Membranes and Stabilization Strategies 171 Vincenzo Arcella, Luca Merlo, and Alessandro Ghielmi 7.1 Introduction 171 7.2 Properties of SSC Ionomers 173 7.3 Properties of Aquivion® Ionomers 173 7.4 The Need for High Stability of PFSA Membranes 177 7.5 PFSA Membrane Degradation in Fuel Cell 177 7.6 Generation of Radical Species in the Fuel Cell Environment 178 7.7 Degradation Studies on Aquivion® Membranes 181 7.8 Stabilization Procedures on Aquivion® Membranes 185 7.9 Conclusions 190 References 190 8 Anion Exchange Membranes: Stability and Synthetic Approach 195 Dongwon Shin, Chulsung Bae, and Yu Seung Kim 8.1 Introduction 195 8.2 Chemical Degradation Mechanisms 196 8.2.1 Degradation of Cationic Groups 196 8.2.1.1 Alkyl Ammoniums 196 8.2.1.2 N(c)\Based Cyclic Cations 199 8.2.1.3 Other Cationic Groups 202 8.2.2 Degradation of Polymer Backbones 204 8.2.2.1 Polyolefins 205 8.2.2.2 Polyaromatics 205 8.2.2.3 Polyacrylates 207 8.2.2.4 Polybenzimidazoles 208 8.2.2.5 Perfluorinated Polymers 208 8.3 Synthetic Approaches 210 8.3.1 Polyolefins 210 8.3.1.1 Polyethylene and Polypropylene 211 8.3.1.2 Polystyrene 212 8.3.1.3 Others 215 8.3.2 Polyaromatics 217 8.3.2.1 Cationic(c)\Group(c)\Tethered Poly(arylene)s 217 8.3.2.2 Poly(arylene)(c)\Containing Cationic Polymer Backbones 219 8.3.2.3 Multication(c)\Tethered Poly(arylene)s 219 8.3.3 Other Polymers 221 8.3.3.1 Polybenzimidazoles 221 8.3.3.2 Polynorbornenes 223 8.3.3.3 Perfluorinated Polymers 224 8.4 Conclusions 225 Acknowledgments 225 References 226 9 Profiling of Membrane Degradation Processes in a Fuel Cell by 2D Spectral-Spatial FTIR 229 Shulamith Schlick and Marek Danilczuk 9.1 Introduction 229 9.2 Optical Images of Nafion® Cross Sections 231 9.3 Line Scan Maps of the Membranes 232 9.4 FTIR Spectra of Nafion® MEAs 232 9.5 Abstraction of a Fluorine Atom on a Carbon in the Nafion® Main Chain by H
235 9.6 Conclusions 237 Acknowledgments 237 References 238 10 Quantum Mechanical Calculations of the Degradation in Perfluorinated Membranes Used in Fuel Cells 241 Ted H. Yu, Boris V. Merinov, and William A. Goddard III 10.1 Introduction 241 10.2 Computational Methods 244 10.3 Results and Discussion 244 10.3.1 Generation of Radicals 244 10.3.1.1 Hydroxyl Radicals 244 10.3.1.2 Hydrogen Radicals, H
247 10.3.1.3 Hydroperoxyl Radicals, HOO
249 10.3.2 Concentrated HO
Conditions versus Fuel Cell Conditions 249 10.3.3 Degradation under Concentrated HO
Conditions 249 10.3.3.1 R(c)
CF2H Polymer Main Chain Defect Initiation 249 10.3.3.2 R(c)
CF
TCF2 Polymer Main Chain Defect Initiation 250 10.3.3.3 R(c)
COOH Polymer Main Chain Defect Initiation 250 10.3.3.4 Propagating Polymer Main Chain Degradation 250 10.3.3.5 Side(c)\Chain Degradation 252 10.3.4 Degradation under Fuel Cell Conditions with Fuel Crossover 256 10.3.4.1 Polymer Main Chain End(c)\Group Initiation 256 10.3.4.2 Propagating Polymer Main Chain Degradation 256 10.3.4.3 Side(c)\Chain Degradation 257 10.3.5 Degradation under Fuel Cell Conditions without Crossover 259 10.3.5.1 Degradation at the Cathode without H2 Crossover 259 10.3.5.2 Degradation at the Anode without O2 Crossover 261 10.4 Summary 265 10.4.1 Concentrated HO
Conditions 265 10.4.2 Fuel Cell Conditions 265 10.4.2.1 Fuel Cell Conditions without Crossover at Cathode 266 10.4.2.2 Fuel Cell Conditions without Crossover at Anode 266 Acknowledgments 267 References 267 Index 271