40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Zur Zeit liegt uns keine Inhaltsangabe vor.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 51.75MB
Zur Zeit liegt uns keine Inhaltsangabe vor.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Birkhäuser Boston
- Seitenzahl: 465
- Erscheinungstermin: 22. November 2013
- Englisch
- ISBN-13: 9781489935588
- Artikelnr.: 44209198
- Verlag: Birkhäuser Boston
- Seitenzahl: 465
- Erscheinungstermin: 22. November 2013
- Englisch
- ISBN-13: 9781489935588
- Artikelnr.: 44209198
Chain Partitions in Ordered Sets.- A Decomposition Theorem for Partially Ordered Sets.- Some Combinatorial Problems on Partially Ordered Sets.- The Impact of the Chain Decomposition Theorem on Classical Combinatorics.- Dilworth's Decomposition Theorem in the Infinite Case.- Effective Versions of the Chain Decomposition Theorem.- Complementation.- Lattices with Unique Complements.- On Complemented Lattices.- Uniquely Complemented Lattices.- On Orthomodular Lattices.- Decomposition Theory.- Lattices with Unique Irreducible Decompositions.- The Arithmetical Theory of Birkhoff Lattices.- Ideals in Birkhoff Lattices.- Decomposition Theory for Lattices without Chain Conditions.- Note on the Kurosch-Ore Theorem.- Structure and Decomposition Theory of Lattices.- Dilworth's Work on Decompositions in Semimodular Lattices.- The Consequences of Dilworth's Work on Lattices with Unique Irreducible Decompositions.- Exchange Properties for Reduced Decompositions in Modular Lattices.- The Impact of Dilworth's Work on Semimodular Lattices on the Kurosch-Ore Theorem.- Modular and Distributive Lattices.- The Imbedding Problem for Modular Lattices.- Proof of a Conjecture on Finite Modular Lattices.- Distributivity in Lattices.- Aspects of distributivity.- The Role of Gluing Constructions in Modular Lattice Theory.- Dilworth's Covering Theorem for Modular Lattices.- Geometric and Semimodular Lattices.- Dependence Relations in a Semi-Modular Lattice.- A Counterexample to the Generalization of Sperner's Theorem.- Dilworth's Completion, Submodular Functions, and Combinatorial Optimization.- Dilworth Truncations of Geometric Lattices.- The Sperner Property in Geometric and Partition Lattices.- Multiplicative Lattices.- Abstract Residuation over Lattices.- Residuated Lattices.-Non-Commutative Residuated Lattices.- Non-Commutative Arithmetic.- Abstract Commutative Ideal Theory.- Dilworth's Early Papers on Residuated and Multiplicative Lattices.- Abstract Ideal Theory: Principals and Particulars.- Representation and Embedding Theorems for Noether Lattices and r-Lattices.- Miscellaneous Papers.- The Structure of Relatively Complemented Lattices.- The Normal Completion of the Lattice of Continuous Functions.- A Generalized Cantor Theorem.- Generators of lattice varieties.- Lattice Congruences and Dilworth's Decomposition of Relatively Complemented Lattices.- The Normal Completion of the Lattice of Continuous Functions.- Cantor Theorems for Relations.- Ideal and Filter Constructions in Lattice Varieties.- Two Results from "Algebraic Theory of Lattices".- Dilworth's Proof of the Embedding Theorem.- On the Congruence Lattice of a Lattice.
Chain Partitions in Ordered Sets.- A Decomposition Theorem for Partially Ordered Sets.- Some Combinatorial Problems on Partially Ordered Sets.- The Impact of the Chain Decomposition Theorem on Classical Combinatorics.- Dilworth's Decomposition Theorem in the Infinite Case.- Effective Versions of the Chain Decomposition Theorem.- Complementation.- Lattices with Unique Complements.- On Complemented Lattices.- Uniquely Complemented Lattices.- On Orthomodular Lattices.- Decomposition Theory.- Lattices with Unique Irreducible Decompositions.- The Arithmetical Theory of Birkhoff Lattices.- Ideals in Birkhoff Lattices.- Decomposition Theory for Lattices without Chain Conditions.- Note on the Kurosch-Ore Theorem.- Structure and Decomposition Theory of Lattices.- Dilworth's Work on Decompositions in Semimodular Lattices.- The Consequences of Dilworth's Work on Lattices with Unique Irreducible Decompositions.- Exchange Properties for Reduced Decompositions in Modular Lattices.- The Impact of Dilworth's Work on Semimodular Lattices on the Kurosch-Ore Theorem.- Modular and Distributive Lattices.- The Imbedding Problem for Modular Lattices.- Proof of a Conjecture on Finite Modular Lattices.- Distributivity in Lattices.- Aspects of distributivity.- The Role of Gluing Constructions in Modular Lattice Theory.- Dilworth's Covering Theorem for Modular Lattices.- Geometric and Semimodular Lattices.- Dependence Relations in a Semi-Modular Lattice.- A Counterexample to the Generalization of Sperner's Theorem.- Dilworth's Completion, Submodular Functions, and Combinatorial Optimization.- Dilworth Truncations of Geometric Lattices.- The Sperner Property in Geometric and Partition Lattices.- Multiplicative Lattices.- Abstract Residuation over Lattices.- Residuated Lattices.-Non-Commutative Residuated Lattices.- Non-Commutative Arithmetic.- Abstract Commutative Ideal Theory.- Dilworth's Early Papers on Residuated and Multiplicative Lattices.- Abstract Ideal Theory: Principals and Particulars.- Representation and Embedding Theorems for Noether Lattices and r-Lattices.- Miscellaneous Papers.- The Structure of Relatively Complemented Lattices.- The Normal Completion of the Lattice of Continuous Functions.- A Generalized Cantor Theorem.- Generators of lattice varieties.- Lattice Congruences and Dilworth's Decomposition of Relatively Complemented Lattices.- The Normal Completion of the Lattice of Continuous Functions.- Cantor Theorems for Relations.- Ideal and Filter Constructions in Lattice Varieties.- Two Results from "Algebraic Theory of Lattices".- Dilworth's Proof of the Embedding Theorem.- On the Congruence Lattice of a Lattice.