E. C. M. Chen, E. S. D. Chen
The Electron Capture Detector and The Study of Reactions With Thermal Electrons (eBook, PDF)
217,99 €
217,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
217,99 €
Als Download kaufen
217,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
217,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
E. C. M. Chen, E. S. D. Chen
The Electron Capture Detector and The Study of Reactions With Thermal Electrons (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Broad in scope, this book describes the general theory and practice of using the Electron Capture Detector (ECD) to study reactions of thermal electrons with molecules. It reviews electron affinities and thermodynamic and kinetic parameters of atoms, small molecules, and large organic molecules obtained by using various methods. * Summarizes other methods for studying reactions of thermal electrons with molecules * Discusses applications in analytical chemistry, physical chemistry, and biochemistry * Provides a data table of electron affinities
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 3.02MB
Andere Kunden interessierten sich auch für
- Gillian McmahonAnalytical Instrumentation (eBook, PDF)93,99 €
- Raman Spectroscopy for Soft Matter Applications (eBook, PDF)112,99 €
- John A. WeilElectron Paramagnetic Resonance (eBook, PDF)199,99 €
- Thermal Analysis of Polymers (eBook, PDF)180,99 €
- Electron Paramagnetic Resonance (eBook, PDF)141,99 €
- Dana W. MayoCourse Notes on the Interpretation of Infrared and Raman Spectra (eBook, PDF)199,99 €
- Jeroen A. van BokhovenX-Ray Absorption and X-Ray Emission Spectroscopy (eBook, PDF)224,99 €
-
-
-
Broad in scope, this book describes the general theory and practice of using the Electron Capture Detector (ECD) to study reactions of thermal electrons with molecules. It reviews electron affinities and thermodynamic and kinetic parameters of atoms, small molecules, and large organic molecules obtained by using various methods. * Summarizes other methods for studying reactions of thermal electrons with molecules * Discusses applications in analytical chemistry, physical chemistry, and biochemistry * Provides a data table of electron affinities
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 416
- Erscheinungstermin: 1. April 2004
- Englisch
- ISBN-13: 9780471659884
- Artikelnr.: 37301871
- Verlag: John Wiley & Sons
- Seitenzahl: 416
- Erscheinungstermin: 1. April 2004
- Englisch
- ISBN-13: 9780471659884
- Artikelnr.: 37301871
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
E. C. M. CHEN is Professor Emeritus in the Department of Natural and Applied Sciences at the University of Houston-Clear Lake. E. S. CHEN is formerly of the Center for Research on Parallel Computation at Rice University in Houston, Texas.
Foreword xiii
Preface xv
1. Scope and History of the Electron 1
1.1 General Objectives and Organization 1
1.2 General Scope 2
1.3 History of the Electron 4
References 6
2. Definitions, Nomenclature, Reactions, and Equations 8
2.1 Introduction 8
2.2 Definition of Kinetic and Energetic Terms 8
2.3 Additional Gas Phase Ionic Reactions 15
2.4 Electron Affinities from Solution Data 16
2.5 Semi-Empirical Calculations of Energetic Quantities 17
2.6 Herschbach Ionic Morse Potential Energy Curves 18
2.7 Summary 19
References 20
3. Thermal Electron Reactions at the University of Houston 22
3.1 General Introduction 22
3.2 The First Half-Century, 1900 to 1950 23
3.3 Fundamental Discovery, 1950 to 1960 25
3.4 General Accomplishments, 1960 to 1970 27
3.4.1 Introduction 27
3.4.2 The Wentworth Group 28
3.4.3 Stable Negative-Ion Formation 28
3.4.4 Dissociative Thermal Electron Attachment 33
3.4.5 Nonlinear Least Squares 35
3.5 Milestones in the Wentworth Laboratory and Complementary Methods, 1970
to 1980 37
3.6 Negative-Ion Mass Spectrometry and Morse Potential Energy Curves, 1980
to 1990 40
3.7 Experimental and Theoretical Milestones, 1990 to 2000 41
3.8 Summary of Contributions at the University of Houston 42
References 43
4. Theoretical Basis of the Experimental Tools 47
4.1 Introduction 47
4.2 The Kinetic Model of the ECD and NIMS 47
4.3 Nondissociative Electron Capture 50
4.4 Dissociative Electron Attachment 59
4.5 Electron Affinities and Half-Wave Reduction Potentials 64
4.6 Electron Affinities and Ionization Potentials of Aromatic Hydrocarbons
66
4.7 Electron Affinities and Charge Transfer Complex Energies 67
4.8 Summary 71
References 73
5. Experimental Procedures and Data Reduction 75
5.1 Introduction 75
5.2 Experimental ECD and NICI Procedures 76
5.3 Reduction of ECD Data to Fundamental Properties 85
5.3.1 Introduction 85
5.3.2 Acetophenone and Benzaldehyde 86
5.3.3 Benzanthracene, Benz[a]pyrene, and 1-Naphthaldehyde 87
5.3.4 Carbon Disulfide 89
5.3.5 Nitromethane 90
5.3.6 Consolidation of Electron Affinities for Molecular Oxygen 91
5.4 Reduction of Negative-Ion Mass Spectral Data 93
5.5 Precision and Accuracy 96
5.6 Evaluation of Experimental Results 97
5.7 Summary 101
References 101
6. Complementary Experimental and Theoretical Procedures 103
6.1 Introduction 103
6.2 Equilibrium Methods for Determining Electron Affinities 105
6.3 Photon Techniques 110
6.4 Thermal Charge Transfer Methods 116
6.5 Electron and Particle Beam Techniques 121
6.6 Condensed Phase Measurements of Electron Affinities 124
6.7 Complementary Theoretical Calculations 125
6.7.1 Atomic Electron Affinities 126
6.7.2 Polyatomic Molecules 128
6.8 Rate Constants for Attachment, Detachment, and Recombination 132
6.9 Summary 134
References 134
7. Consolidating Experimental, Theoretical, and Empirical Data 139
7.1 Introduction 139
7.2 Semi-Empirical Quantum Mechanical Calculations 140
7.3 Morse Potential Energy Curves 150
7.3.1 Classification of Negative-Ion Morse Potentials 151
7.3.2 The Negative-Ion States of H 2 153
7.3.3 The Negative-Ion States of I 2 156
7.3.4 The Negative-Ion States of Benzene and Naphthalene 157
7.4 Empirical Correlations 161
7.5 Summary 165
References 166
8. Selection, Assignment, and Correlations of Atomic Electron Affinities
168
8.1 Introduction 168
8.2 Evaluation of Atomic Electron Affinities 169
8.3 Mulliken Electronegativities 178
8.4 Electron Affinities of Atomic Clusters 184
8.5 Summary 189
References 190
9. Diatomic and Triatomic Molecules and Sulfur Fluorides 193
9.1 Introduction 193
9.2 Diatomic Molecules 194
9.2.1 Electron Affinities and Periodic Trends of Homonuclear Diatomic
Molecules 194
9.2.2 Electron Affinities and Morse Potential Energy Curves: Group VII
Diatomic Molecules and Anions 197
9.2.3 Electron Affinities and Morse Potential Energy Curves: Group VI
Diatomic Molecules and Anions 205
9.2.4 Electron Affinities and Morse Potential Energy Curves: Group IA and
IB Homonuclear Diatomic Molecules and Anions 209
9.2.5 Electron Affinities and Morse Potential Energy Curves: NO and NO(-)
214
9.3 Triatomic Molecules and Anions 216
9.4 Electron Affinities and Morse Potential Energy Curves: Sulfur Fluorides
and Anions 224
9.5 Summary 229
References 229
10. Negative Ions of Organic Molecules 234
10.1 Introduction 234
10.2 Electron Affinities and Potential Energy Curves for Nitrobenzene and
Nitromethane 235
10.3 Electron Affinities Determined Using the Magnetron, Alkali Metal Beam,
Photon, and Collisional Ionization Methods 238
10.3.1 Electron Affinities Determined Using the Magnetron Method 238
10.3.2 Electron Affinities Determined Using the AMB Method 240
10.3.3 Electron Affinities Determined Using Photon Methods 241
10.3.4 Electron Affinities Determined Using Collisional Ionization Methods
243
10.4 Electron Affinities Determined Using the ECD, NIMS, and TCT Methods
244
10.4.1 Electron Affinities of Aromatic Hydrocarbons by the ECD Method 244
10.4.2 Electron Affinities of Organic Carbonyl Compounds by the ECD Method
246
10.4.3 Electron Affinities of Organic Nitro Compounds the ECD and TCT
Methods 253
10.5 Electron Affinities of Charge Transfer Complex Acceptors 257
10.6 Substituent Effect 261
10.7 Summary 263
References 263
11. Thermal Electrons and Environmental Pollutants 266
11.1 Introduction 266
11.2 Alkyl Halides 267
11.2.1 Morse Potential Energy Curves 267
11.2.2 Experimental Activation Energies 269
11.2.3 Alkyl Fluorocompounds 272
11.2.4 Electron Affinities of the Alkyl Halides 274
11.3 Aromatic Halides 276
11.3.1 Electron Affinities of Fluoro- and Chlorobenzenes 276
11.3.2 Electron Affinities from Reduction Potentials and CURES-EC 283
11.3.3 Negative-Ion Mass Spectra and Electron Affinities 284
11.4 Negative-Ion Mass Spectrometry 287
11.5 Calculation of the ECD and NIMS Temperature Dependence 291
11.6 Summary 293
References 293
12. Biologically Significant Molecules 296
12.1 Introduction 296
12.2 Electron Affinities of Purines and Pyrimidines 299
12.2.1 Predictions of Electron Affinities 299
12.2.2 Electron Affinities from Reduction Potentials 300
12.2.3 Gas Phase Measurements of Electron Affinities 302
12.2.4 Theoretical Electron Affinities 305
12.3 Electron Affinities of Biological Molecules from Reduction Potentials
307
12.4 Gas Phase Acidities of Nucleic Acids 310
12.5 Morse Potential Energy Curves for Thymine and Cytosine 311
12.6 Gas Phase Acidities and Electron Affinities of the Amino Acids 315
12.7 The Calculation of the ECD and NIMS Temperature Dependence 316
12.8 Electron Affinities of AT AU and GC 318
12.9 Radiation Damage in DNA 320
12.10 Summary 326
References 327
Appendices 329
I Glossary of Terms, Acronyms, and Symbols 331
II Structures of Organic Molecules 336
III General Least Squares 339
IV Tables of Evaluated Electron Affinities 349
Table A.1 Atoms 349
Table A1.2 Main Group Homonuclear Diatomic Molecules 351
References 352
Table A2.1 and A.2 CH Molecules 355
References 357
Table A2.3 and A2.4 CHX Molecules 357
References 359
Table A3.1 and A3.2 CHNX Molecules 360
References 361
Table A4.1 and A4.2 CHO Molecules 362
Table A4.3 and A4.4 CHOX Molecules 366
References 369
Table A5.1 and A5.2 CHON Molecules 370
Table A5.3 and A5.4 CHONX Molecules 375
References 376
Table A6.1 Bergman Dewar set 377
Table A6.2 Values Different from NIST Values (from Tables A2.1 to A5.4) 378
Table A6.3 Unpublished or Updated Gas Phase Values not in NIST Tables 380
Table A6.4 Values for Adenine, Guanine, Cytosine, Uracil, Thymine, and
Their Hydrates 382
Table A6.5 Values for Charge Transfer Complex Acceptors not in NIST Tables
382
Table A6.6 Values for Chlorinated Hydrocarbons from Reduction Potentials
and CURES-EC 383
Table A6.7 Values for Biological Compounds from Reduction Potentials 383
Author Index 387
Subject Index 395
Preface xv
1. Scope and History of the Electron 1
1.1 General Objectives and Organization 1
1.2 General Scope 2
1.3 History of the Electron 4
References 6
2. Definitions, Nomenclature, Reactions, and Equations 8
2.1 Introduction 8
2.2 Definition of Kinetic and Energetic Terms 8
2.3 Additional Gas Phase Ionic Reactions 15
2.4 Electron Affinities from Solution Data 16
2.5 Semi-Empirical Calculations of Energetic Quantities 17
2.6 Herschbach Ionic Morse Potential Energy Curves 18
2.7 Summary 19
References 20
3. Thermal Electron Reactions at the University of Houston 22
3.1 General Introduction 22
3.2 The First Half-Century, 1900 to 1950 23
3.3 Fundamental Discovery, 1950 to 1960 25
3.4 General Accomplishments, 1960 to 1970 27
3.4.1 Introduction 27
3.4.2 The Wentworth Group 28
3.4.3 Stable Negative-Ion Formation 28
3.4.4 Dissociative Thermal Electron Attachment 33
3.4.5 Nonlinear Least Squares 35
3.5 Milestones in the Wentworth Laboratory and Complementary Methods, 1970
to 1980 37
3.6 Negative-Ion Mass Spectrometry and Morse Potential Energy Curves, 1980
to 1990 40
3.7 Experimental and Theoretical Milestones, 1990 to 2000 41
3.8 Summary of Contributions at the University of Houston 42
References 43
4. Theoretical Basis of the Experimental Tools 47
4.1 Introduction 47
4.2 The Kinetic Model of the ECD and NIMS 47
4.3 Nondissociative Electron Capture 50
4.4 Dissociative Electron Attachment 59
4.5 Electron Affinities and Half-Wave Reduction Potentials 64
4.6 Electron Affinities and Ionization Potentials of Aromatic Hydrocarbons
66
4.7 Electron Affinities and Charge Transfer Complex Energies 67
4.8 Summary 71
References 73
5. Experimental Procedures and Data Reduction 75
5.1 Introduction 75
5.2 Experimental ECD and NICI Procedures 76
5.3 Reduction of ECD Data to Fundamental Properties 85
5.3.1 Introduction 85
5.3.2 Acetophenone and Benzaldehyde 86
5.3.3 Benzanthracene, Benz[a]pyrene, and 1-Naphthaldehyde 87
5.3.4 Carbon Disulfide 89
5.3.5 Nitromethane 90
5.3.6 Consolidation of Electron Affinities for Molecular Oxygen 91
5.4 Reduction of Negative-Ion Mass Spectral Data 93
5.5 Precision and Accuracy 96
5.6 Evaluation of Experimental Results 97
5.7 Summary 101
References 101
6. Complementary Experimental and Theoretical Procedures 103
6.1 Introduction 103
6.2 Equilibrium Methods for Determining Electron Affinities 105
6.3 Photon Techniques 110
6.4 Thermal Charge Transfer Methods 116
6.5 Electron and Particle Beam Techniques 121
6.6 Condensed Phase Measurements of Electron Affinities 124
6.7 Complementary Theoretical Calculations 125
6.7.1 Atomic Electron Affinities 126
6.7.2 Polyatomic Molecules 128
6.8 Rate Constants for Attachment, Detachment, and Recombination 132
6.9 Summary 134
References 134
7. Consolidating Experimental, Theoretical, and Empirical Data 139
7.1 Introduction 139
7.2 Semi-Empirical Quantum Mechanical Calculations 140
7.3 Morse Potential Energy Curves 150
7.3.1 Classification of Negative-Ion Morse Potentials 151
7.3.2 The Negative-Ion States of H 2 153
7.3.3 The Negative-Ion States of I 2 156
7.3.4 The Negative-Ion States of Benzene and Naphthalene 157
7.4 Empirical Correlations 161
7.5 Summary 165
References 166
8. Selection, Assignment, and Correlations of Atomic Electron Affinities
168
8.1 Introduction 168
8.2 Evaluation of Atomic Electron Affinities 169
8.3 Mulliken Electronegativities 178
8.4 Electron Affinities of Atomic Clusters 184
8.5 Summary 189
References 190
9. Diatomic and Triatomic Molecules and Sulfur Fluorides 193
9.1 Introduction 193
9.2 Diatomic Molecules 194
9.2.1 Electron Affinities and Periodic Trends of Homonuclear Diatomic
Molecules 194
9.2.2 Electron Affinities and Morse Potential Energy Curves: Group VII
Diatomic Molecules and Anions 197
9.2.3 Electron Affinities and Morse Potential Energy Curves: Group VI
Diatomic Molecules and Anions 205
9.2.4 Electron Affinities and Morse Potential Energy Curves: Group IA and
IB Homonuclear Diatomic Molecules and Anions 209
9.2.5 Electron Affinities and Morse Potential Energy Curves: NO and NO(-)
214
9.3 Triatomic Molecules and Anions 216
9.4 Electron Affinities and Morse Potential Energy Curves: Sulfur Fluorides
and Anions 224
9.5 Summary 229
References 229
10. Negative Ions of Organic Molecules 234
10.1 Introduction 234
10.2 Electron Affinities and Potential Energy Curves for Nitrobenzene and
Nitromethane 235
10.3 Electron Affinities Determined Using the Magnetron, Alkali Metal Beam,
Photon, and Collisional Ionization Methods 238
10.3.1 Electron Affinities Determined Using the Magnetron Method 238
10.3.2 Electron Affinities Determined Using the AMB Method 240
10.3.3 Electron Affinities Determined Using Photon Methods 241
10.3.4 Electron Affinities Determined Using Collisional Ionization Methods
243
10.4 Electron Affinities Determined Using the ECD, NIMS, and TCT Methods
244
10.4.1 Electron Affinities of Aromatic Hydrocarbons by the ECD Method 244
10.4.2 Electron Affinities of Organic Carbonyl Compounds by the ECD Method
246
10.4.3 Electron Affinities of Organic Nitro Compounds the ECD and TCT
Methods 253
10.5 Electron Affinities of Charge Transfer Complex Acceptors 257
10.6 Substituent Effect 261
10.7 Summary 263
References 263
11. Thermal Electrons and Environmental Pollutants 266
11.1 Introduction 266
11.2 Alkyl Halides 267
11.2.1 Morse Potential Energy Curves 267
11.2.2 Experimental Activation Energies 269
11.2.3 Alkyl Fluorocompounds 272
11.2.4 Electron Affinities of the Alkyl Halides 274
11.3 Aromatic Halides 276
11.3.1 Electron Affinities of Fluoro- and Chlorobenzenes 276
11.3.2 Electron Affinities from Reduction Potentials and CURES-EC 283
11.3.3 Negative-Ion Mass Spectra and Electron Affinities 284
11.4 Negative-Ion Mass Spectrometry 287
11.5 Calculation of the ECD and NIMS Temperature Dependence 291
11.6 Summary 293
References 293
12. Biologically Significant Molecules 296
12.1 Introduction 296
12.2 Electron Affinities of Purines and Pyrimidines 299
12.2.1 Predictions of Electron Affinities 299
12.2.2 Electron Affinities from Reduction Potentials 300
12.2.3 Gas Phase Measurements of Electron Affinities 302
12.2.4 Theoretical Electron Affinities 305
12.3 Electron Affinities of Biological Molecules from Reduction Potentials
307
12.4 Gas Phase Acidities of Nucleic Acids 310
12.5 Morse Potential Energy Curves for Thymine and Cytosine 311
12.6 Gas Phase Acidities and Electron Affinities of the Amino Acids 315
12.7 The Calculation of the ECD and NIMS Temperature Dependence 316
12.8 Electron Affinities of AT AU and GC 318
12.9 Radiation Damage in DNA 320
12.10 Summary 326
References 327
Appendices 329
I Glossary of Terms, Acronyms, and Symbols 331
II Structures of Organic Molecules 336
III General Least Squares 339
IV Tables of Evaluated Electron Affinities 349
Table A.1 Atoms 349
Table A1.2 Main Group Homonuclear Diatomic Molecules 351
References 352
Table A2.1 and A.2 CH Molecules 355
References 357
Table A2.3 and A2.4 CHX Molecules 357
References 359
Table A3.1 and A3.2 CHNX Molecules 360
References 361
Table A4.1 and A4.2 CHO Molecules 362
Table A4.3 and A4.4 CHOX Molecules 366
References 369
Table A5.1 and A5.2 CHON Molecules 370
Table A5.3 and A5.4 CHONX Molecules 375
References 376
Table A6.1 Bergman Dewar set 377
Table A6.2 Values Different from NIST Values (from Tables A2.1 to A5.4) 378
Table A6.3 Unpublished or Updated Gas Phase Values not in NIST Tables 380
Table A6.4 Values for Adenine, Guanine, Cytosine, Uracil, Thymine, and
Their Hydrates 382
Table A6.5 Values for Charge Transfer Complex Acceptors not in NIST Tables
382
Table A6.6 Values for Chlorinated Hydrocarbons from Reduction Potentials
and CURES-EC 383
Table A6.7 Values for Biological Compounds from Reduction Potentials 383
Author Index 387
Subject Index 395
Foreword xiii
Preface xv
1. Scope and History of the Electron 1
1.1 General Objectives and Organization 1
1.2 General Scope 2
1.3 History of the Electron 4
References 6
2. Definitions, Nomenclature, Reactions, and Equations 8
2.1 Introduction 8
2.2 Definition of Kinetic and Energetic Terms 8
2.3 Additional Gas Phase Ionic Reactions 15
2.4 Electron Affinities from Solution Data 16
2.5 Semi-Empirical Calculations of Energetic Quantities 17
2.6 Herschbach Ionic Morse Potential Energy Curves 18
2.7 Summary 19
References 20
3. Thermal Electron Reactions at the University of Houston 22
3.1 General Introduction 22
3.2 The First Half-Century, 1900 to 1950 23
3.3 Fundamental Discovery, 1950 to 1960 25
3.4 General Accomplishments, 1960 to 1970 27
3.4.1 Introduction 27
3.4.2 The Wentworth Group 28
3.4.3 Stable Negative-Ion Formation 28
3.4.4 Dissociative Thermal Electron Attachment 33
3.4.5 Nonlinear Least Squares 35
3.5 Milestones in the Wentworth Laboratory and Complementary Methods, 1970
to 1980 37
3.6 Negative-Ion Mass Spectrometry and Morse Potential Energy Curves, 1980
to 1990 40
3.7 Experimental and Theoretical Milestones, 1990 to 2000 41
3.8 Summary of Contributions at the University of Houston 42
References 43
4. Theoretical Basis of the Experimental Tools 47
4.1 Introduction 47
4.2 The Kinetic Model of the ECD and NIMS 47
4.3 Nondissociative Electron Capture 50
4.4 Dissociative Electron Attachment 59
4.5 Electron Affinities and Half-Wave Reduction Potentials 64
4.6 Electron Affinities and Ionization Potentials of Aromatic Hydrocarbons
66
4.7 Electron Affinities and Charge Transfer Complex Energies 67
4.8 Summary 71
References 73
5. Experimental Procedures and Data Reduction 75
5.1 Introduction 75
5.2 Experimental ECD and NICI Procedures 76
5.3 Reduction of ECD Data to Fundamental Properties 85
5.3.1 Introduction 85
5.3.2 Acetophenone and Benzaldehyde 86
5.3.3 Benzanthracene, Benz[a]pyrene, and 1-Naphthaldehyde 87
5.3.4 Carbon Disulfide 89
5.3.5 Nitromethane 90
5.3.6 Consolidation of Electron Affinities for Molecular Oxygen 91
5.4 Reduction of Negative-Ion Mass Spectral Data 93
5.5 Precision and Accuracy 96
5.6 Evaluation of Experimental Results 97
5.7 Summary 101
References 101
6. Complementary Experimental and Theoretical Procedures 103
6.1 Introduction 103
6.2 Equilibrium Methods for Determining Electron Affinities 105
6.3 Photon Techniques 110
6.4 Thermal Charge Transfer Methods 116
6.5 Electron and Particle Beam Techniques 121
6.6 Condensed Phase Measurements of Electron Affinities 124
6.7 Complementary Theoretical Calculations 125
6.7.1 Atomic Electron Affinities 126
6.7.2 Polyatomic Molecules 128
6.8 Rate Constants for Attachment, Detachment, and Recombination 132
6.9 Summary 134
References 134
7. Consolidating Experimental, Theoretical, and Empirical Data 139
7.1 Introduction 139
7.2 Semi-Empirical Quantum Mechanical Calculations 140
7.3 Morse Potential Energy Curves 150
7.3.1 Classification of Negative-Ion Morse Potentials 151
7.3.2 The Negative-Ion States of H 2 153
7.3.3 The Negative-Ion States of I 2 156
7.3.4 The Negative-Ion States of Benzene and Naphthalene 157
7.4 Empirical Correlations 161
7.5 Summary 165
References 166
8. Selection, Assignment, and Correlations of Atomic Electron Affinities
168
8.1 Introduction 168
8.2 Evaluation of Atomic Electron Affinities 169
8.3 Mulliken Electronegativities 178
8.4 Electron Affinities of Atomic Clusters 184
8.5 Summary 189
References 190
9. Diatomic and Triatomic Molecules and Sulfur Fluorides 193
9.1 Introduction 193
9.2 Diatomic Molecules 194
9.2.1 Electron Affinities and Periodic Trends of Homonuclear Diatomic
Molecules 194
9.2.2 Electron Affinities and Morse Potential Energy Curves: Group VII
Diatomic Molecules and Anions 197
9.2.3 Electron Affinities and Morse Potential Energy Curves: Group VI
Diatomic Molecules and Anions 205
9.2.4 Electron Affinities and Morse Potential Energy Curves: Group IA and
IB Homonuclear Diatomic Molecules and Anions 209
9.2.5 Electron Affinities and Morse Potential Energy Curves: NO and NO(-)
214
9.3 Triatomic Molecules and Anions 216
9.4 Electron Affinities and Morse Potential Energy Curves: Sulfur Fluorides
and Anions 224
9.5 Summary 229
References 229
10. Negative Ions of Organic Molecules 234
10.1 Introduction 234
10.2 Electron Affinities and Potential Energy Curves for Nitrobenzene and
Nitromethane 235
10.3 Electron Affinities Determined Using the Magnetron, Alkali Metal Beam,
Photon, and Collisional Ionization Methods 238
10.3.1 Electron Affinities Determined Using the Magnetron Method 238
10.3.2 Electron Affinities Determined Using the AMB Method 240
10.3.3 Electron Affinities Determined Using Photon Methods 241
10.3.4 Electron Affinities Determined Using Collisional Ionization Methods
243
10.4 Electron Affinities Determined Using the ECD, NIMS, and TCT Methods
244
10.4.1 Electron Affinities of Aromatic Hydrocarbons by the ECD Method 244
10.4.2 Electron Affinities of Organic Carbonyl Compounds by the ECD Method
246
10.4.3 Electron Affinities of Organic Nitro Compounds the ECD and TCT
Methods 253
10.5 Electron Affinities of Charge Transfer Complex Acceptors 257
10.6 Substituent Effect 261
10.7 Summary 263
References 263
11. Thermal Electrons and Environmental Pollutants 266
11.1 Introduction 266
11.2 Alkyl Halides 267
11.2.1 Morse Potential Energy Curves 267
11.2.2 Experimental Activation Energies 269
11.2.3 Alkyl Fluorocompounds 272
11.2.4 Electron Affinities of the Alkyl Halides 274
11.3 Aromatic Halides 276
11.3.1 Electron Affinities of Fluoro- and Chlorobenzenes 276
11.3.2 Electron Affinities from Reduction Potentials and CURES-EC 283
11.3.3 Negative-Ion Mass Spectra and Electron Affinities 284
11.4 Negative-Ion Mass Spectrometry 287
11.5 Calculation of the ECD and NIMS Temperature Dependence 291
11.6 Summary 293
References 293
12. Biologically Significant Molecules 296
12.1 Introduction 296
12.2 Electron Affinities of Purines and Pyrimidines 299
12.2.1 Predictions of Electron Affinities 299
12.2.2 Electron Affinities from Reduction Potentials 300
12.2.3 Gas Phase Measurements of Electron Affinities 302
12.2.4 Theoretical Electron Affinities 305
12.3 Electron Affinities of Biological Molecules from Reduction Potentials
307
12.4 Gas Phase Acidities of Nucleic Acids 310
12.5 Morse Potential Energy Curves for Thymine and Cytosine 311
12.6 Gas Phase Acidities and Electron Affinities of the Amino Acids 315
12.7 The Calculation of the ECD and NIMS Temperature Dependence 316
12.8 Electron Affinities of AT AU and GC 318
12.9 Radiation Damage in DNA 320
12.10 Summary 326
References 327
Appendices 329
I Glossary of Terms, Acronyms, and Symbols 331
II Structures of Organic Molecules 336
III General Least Squares 339
IV Tables of Evaluated Electron Affinities 349
Table A.1 Atoms 349
Table A1.2 Main Group Homonuclear Diatomic Molecules 351
References 352
Table A2.1 and A.2 CH Molecules 355
References 357
Table A2.3 and A2.4 CHX Molecules 357
References 359
Table A3.1 and A3.2 CHNX Molecules 360
References 361
Table A4.1 and A4.2 CHO Molecules 362
Table A4.3 and A4.4 CHOX Molecules 366
References 369
Table A5.1 and A5.2 CHON Molecules 370
Table A5.3 and A5.4 CHONX Molecules 375
References 376
Table A6.1 Bergman Dewar set 377
Table A6.2 Values Different from NIST Values (from Tables A2.1 to A5.4) 378
Table A6.3 Unpublished or Updated Gas Phase Values not in NIST Tables 380
Table A6.4 Values for Adenine, Guanine, Cytosine, Uracil, Thymine, and
Their Hydrates 382
Table A6.5 Values for Charge Transfer Complex Acceptors not in NIST Tables
382
Table A6.6 Values for Chlorinated Hydrocarbons from Reduction Potentials
and CURES-EC 383
Table A6.7 Values for Biological Compounds from Reduction Potentials 383
Author Index 387
Subject Index 395
Preface xv
1. Scope and History of the Electron 1
1.1 General Objectives and Organization 1
1.2 General Scope 2
1.3 History of the Electron 4
References 6
2. Definitions, Nomenclature, Reactions, and Equations 8
2.1 Introduction 8
2.2 Definition of Kinetic and Energetic Terms 8
2.3 Additional Gas Phase Ionic Reactions 15
2.4 Electron Affinities from Solution Data 16
2.5 Semi-Empirical Calculations of Energetic Quantities 17
2.6 Herschbach Ionic Morse Potential Energy Curves 18
2.7 Summary 19
References 20
3. Thermal Electron Reactions at the University of Houston 22
3.1 General Introduction 22
3.2 The First Half-Century, 1900 to 1950 23
3.3 Fundamental Discovery, 1950 to 1960 25
3.4 General Accomplishments, 1960 to 1970 27
3.4.1 Introduction 27
3.4.2 The Wentworth Group 28
3.4.3 Stable Negative-Ion Formation 28
3.4.4 Dissociative Thermal Electron Attachment 33
3.4.5 Nonlinear Least Squares 35
3.5 Milestones in the Wentworth Laboratory and Complementary Methods, 1970
to 1980 37
3.6 Negative-Ion Mass Spectrometry and Morse Potential Energy Curves, 1980
to 1990 40
3.7 Experimental and Theoretical Milestones, 1990 to 2000 41
3.8 Summary of Contributions at the University of Houston 42
References 43
4. Theoretical Basis of the Experimental Tools 47
4.1 Introduction 47
4.2 The Kinetic Model of the ECD and NIMS 47
4.3 Nondissociative Electron Capture 50
4.4 Dissociative Electron Attachment 59
4.5 Electron Affinities and Half-Wave Reduction Potentials 64
4.6 Electron Affinities and Ionization Potentials of Aromatic Hydrocarbons
66
4.7 Electron Affinities and Charge Transfer Complex Energies 67
4.8 Summary 71
References 73
5. Experimental Procedures and Data Reduction 75
5.1 Introduction 75
5.2 Experimental ECD and NICI Procedures 76
5.3 Reduction of ECD Data to Fundamental Properties 85
5.3.1 Introduction 85
5.3.2 Acetophenone and Benzaldehyde 86
5.3.3 Benzanthracene, Benz[a]pyrene, and 1-Naphthaldehyde 87
5.3.4 Carbon Disulfide 89
5.3.5 Nitromethane 90
5.3.6 Consolidation of Electron Affinities for Molecular Oxygen 91
5.4 Reduction of Negative-Ion Mass Spectral Data 93
5.5 Precision and Accuracy 96
5.6 Evaluation of Experimental Results 97
5.7 Summary 101
References 101
6. Complementary Experimental and Theoretical Procedures 103
6.1 Introduction 103
6.2 Equilibrium Methods for Determining Electron Affinities 105
6.3 Photon Techniques 110
6.4 Thermal Charge Transfer Methods 116
6.5 Electron and Particle Beam Techniques 121
6.6 Condensed Phase Measurements of Electron Affinities 124
6.7 Complementary Theoretical Calculations 125
6.7.1 Atomic Electron Affinities 126
6.7.2 Polyatomic Molecules 128
6.8 Rate Constants for Attachment, Detachment, and Recombination 132
6.9 Summary 134
References 134
7. Consolidating Experimental, Theoretical, and Empirical Data 139
7.1 Introduction 139
7.2 Semi-Empirical Quantum Mechanical Calculations 140
7.3 Morse Potential Energy Curves 150
7.3.1 Classification of Negative-Ion Morse Potentials 151
7.3.2 The Negative-Ion States of H 2 153
7.3.3 The Negative-Ion States of I 2 156
7.3.4 The Negative-Ion States of Benzene and Naphthalene 157
7.4 Empirical Correlations 161
7.5 Summary 165
References 166
8. Selection, Assignment, and Correlations of Atomic Electron Affinities
168
8.1 Introduction 168
8.2 Evaluation of Atomic Electron Affinities 169
8.3 Mulliken Electronegativities 178
8.4 Electron Affinities of Atomic Clusters 184
8.5 Summary 189
References 190
9. Diatomic and Triatomic Molecules and Sulfur Fluorides 193
9.1 Introduction 193
9.2 Diatomic Molecules 194
9.2.1 Electron Affinities and Periodic Trends of Homonuclear Diatomic
Molecules 194
9.2.2 Electron Affinities and Morse Potential Energy Curves: Group VII
Diatomic Molecules and Anions 197
9.2.3 Electron Affinities and Morse Potential Energy Curves: Group VI
Diatomic Molecules and Anions 205
9.2.4 Electron Affinities and Morse Potential Energy Curves: Group IA and
IB Homonuclear Diatomic Molecules and Anions 209
9.2.5 Electron Affinities and Morse Potential Energy Curves: NO and NO(-)
214
9.3 Triatomic Molecules and Anions 216
9.4 Electron Affinities and Morse Potential Energy Curves: Sulfur Fluorides
and Anions 224
9.5 Summary 229
References 229
10. Negative Ions of Organic Molecules 234
10.1 Introduction 234
10.2 Electron Affinities and Potential Energy Curves for Nitrobenzene and
Nitromethane 235
10.3 Electron Affinities Determined Using the Magnetron, Alkali Metal Beam,
Photon, and Collisional Ionization Methods 238
10.3.1 Electron Affinities Determined Using the Magnetron Method 238
10.3.2 Electron Affinities Determined Using the AMB Method 240
10.3.3 Electron Affinities Determined Using Photon Methods 241
10.3.4 Electron Affinities Determined Using Collisional Ionization Methods
243
10.4 Electron Affinities Determined Using the ECD, NIMS, and TCT Methods
244
10.4.1 Electron Affinities of Aromatic Hydrocarbons by the ECD Method 244
10.4.2 Electron Affinities of Organic Carbonyl Compounds by the ECD Method
246
10.4.3 Electron Affinities of Organic Nitro Compounds the ECD and TCT
Methods 253
10.5 Electron Affinities of Charge Transfer Complex Acceptors 257
10.6 Substituent Effect 261
10.7 Summary 263
References 263
11. Thermal Electrons and Environmental Pollutants 266
11.1 Introduction 266
11.2 Alkyl Halides 267
11.2.1 Morse Potential Energy Curves 267
11.2.2 Experimental Activation Energies 269
11.2.3 Alkyl Fluorocompounds 272
11.2.4 Electron Affinities of the Alkyl Halides 274
11.3 Aromatic Halides 276
11.3.1 Electron Affinities of Fluoro- and Chlorobenzenes 276
11.3.2 Electron Affinities from Reduction Potentials and CURES-EC 283
11.3.3 Negative-Ion Mass Spectra and Electron Affinities 284
11.4 Negative-Ion Mass Spectrometry 287
11.5 Calculation of the ECD and NIMS Temperature Dependence 291
11.6 Summary 293
References 293
12. Biologically Significant Molecules 296
12.1 Introduction 296
12.2 Electron Affinities of Purines and Pyrimidines 299
12.2.1 Predictions of Electron Affinities 299
12.2.2 Electron Affinities from Reduction Potentials 300
12.2.3 Gas Phase Measurements of Electron Affinities 302
12.2.4 Theoretical Electron Affinities 305
12.3 Electron Affinities of Biological Molecules from Reduction Potentials
307
12.4 Gas Phase Acidities of Nucleic Acids 310
12.5 Morse Potential Energy Curves for Thymine and Cytosine 311
12.6 Gas Phase Acidities and Electron Affinities of the Amino Acids 315
12.7 The Calculation of the ECD and NIMS Temperature Dependence 316
12.8 Electron Affinities of AT AU and GC 318
12.9 Radiation Damage in DNA 320
12.10 Summary 326
References 327
Appendices 329
I Glossary of Terms, Acronyms, and Symbols 331
II Structures of Organic Molecules 336
III General Least Squares 339
IV Tables of Evaluated Electron Affinities 349
Table A.1 Atoms 349
Table A1.2 Main Group Homonuclear Diatomic Molecules 351
References 352
Table A2.1 and A.2 CH Molecules 355
References 357
Table A2.3 and A2.4 CHX Molecules 357
References 359
Table A3.1 and A3.2 CHNX Molecules 360
References 361
Table A4.1 and A4.2 CHO Molecules 362
Table A4.3 and A4.4 CHOX Molecules 366
References 369
Table A5.1 and A5.2 CHON Molecules 370
Table A5.3 and A5.4 CHONX Molecules 375
References 376
Table A6.1 Bergman Dewar set 377
Table A6.2 Values Different from NIST Values (from Tables A2.1 to A5.4) 378
Table A6.3 Unpublished or Updated Gas Phase Values not in NIST Tables 380
Table A6.4 Values for Adenine, Guanine, Cytosine, Uracil, Thymine, and
Their Hydrates 382
Table A6.5 Values for Charge Transfer Complex Acceptors not in NIST Tables
382
Table A6.6 Values for Chlorinated Hydrocarbons from Reduction Potentials
and CURES-EC 383
Table A6.7 Values for Biological Compounds from Reduction Potentials 383
Author Index 387
Subject Index 395