36,99 €
Statt 47,95 €**
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
0 °P sammeln
36,99 €
Statt 47,95 €**
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
Statt 47,95 €****
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
Statt 47,95 €****
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: PDF

Bachelor Thesis from the year 2024 in the subject Computer Science - Commercial Information Technology, grade: 1.0, Frankfurt School of Finance & Management, language: English, abstract: In a world characterized by increasingly complex financial markets, the prediction of financial crises is a constant challenge. This bachelor thesis investigates the use of machine learning, in particular regression algorithms, to analyze and predict financial crises based on macroeconomic data. By building six different regression models and optimizing them using cross-validation and GridSearch, the…mehr

Produktbeschreibung
Bachelor Thesis from the year 2024 in the subject Computer Science - Commercial Information Technology, grade: 1.0, Frankfurt School of Finance & Management, language: English, abstract: In a world characterized by increasingly complex financial markets, the prediction of financial crises is a constant challenge. This bachelor thesis investigates the use of machine learning, in particular regression algorithms, to analyze and predict financial crises based on macroeconomic data. By building six different regression models and optimizing them using cross-validation and GridSearch, the feasibility of using these technologies for accurate predictions is discussed. Although traditional models show limited effectiveness, the integration of machine learning, especially kNN algorithms, reveals significant potential for improving prediction accuracy. The paper highlights the importance of classification algorithms and provides crucial insights for application in real-world scenarios to provide valuable tools for policy and business decision makers.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.