The Finite Element Method (eBook, PDF)
Fundamentals and Applications in Civil, Hydraulic, Mechanical and Aeronautical Engineering
Alle Infos zum eBook verschenken
The Finite Element Method (eBook, PDF)
Fundamentals and Applications in Civil, Hydraulic, Mechanical and Aeronautical Engineering
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
A comprehensive review of the Finite Element Method (FEM), this book provides the fundamentals together with a wide range of applications in civil, mechanical and aeronautical engineering. It addresses both the theoretical and numerical implementation aspects of the FEM, providing examples in several important topics such as solid mechanics, fluid mechanics and heat transfer, appealing to a wide range of engineering disciplines. Written by a renowned author and academician with the Chinese Academy of Engineering, The Finite Element Method would appeal to researchers looking to understand how…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 23.07MB
- Bofang ZhuThe Finite Element Method (eBook, ePUB)139,99 €
- Francisco ChinestaNatural Element Method for the Simulation of Structures and Processes (eBook, PDF)139,99 €
- Singiresu S. RaoEngineering Optimization (eBook, PDF)120,99 €
- Herbert GoeringDie Finite-Elemente-Methode für Anfänger (eBook, PDF)43,99 €
- Myron B. AllenThe Mathematics of Fluid Flow Through Porous Media (eBook, PDF)109,99 €
- Carl F. LorenzoThe Fractional Trigonometry (eBook, PDF)118,99 €
- Bertil GustafssonTime-Dependent Problems and Difference Methods (eBook, PDF)134,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Wiley-IEEE Press
- Seitenzahl: 880
- Erscheinungstermin: 12. März 2018
- Englisch
- ISBN-13: 9781119107330
- Artikelnr.: 52148330
- Verlag: Wiley-IEEE Press
- Seitenzahl: 880
- Erscheinungstermin: 12. März 2018
- Englisch
- ISBN-13: 9781119107330
- Artikelnr.: 52148330
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
About the Author xxv
1 Introduction to Finite ElementMethod andMatrix Analysis of Truss 1
1.1 Introduction to Finite Element Method 1
1.2 Truss Analysis Overview 5
1.3 Stiffness Matrix of Horizontal Bar Element 8
1.4 Stiffness Matrix of Inclined Bar Element 10
1.5 Coordinate Transformation 11
1.6 Nodal Equilibrium Equation and Global Stiffness Matrix 14
1.7 Treatment of Boundary Conditions 15
Bibliography 23
2 Plane Problems in Theory of Elasticity 25
2.1 Discretization of Continuous Medium 25
2.2 Displacement Function 28
2.3 Element Strain 30
2.4 Initial Strain 31
2.5 Element Stress 32
2.6 Equivalent Nodal Force and Element Stiffness Matrix 35
2.7 Nodal Loads 40
2.8 Nodal Equilibrium Equation and Global Stiffness Matrix 43
2.9 Establish the Global Stiffness Matrix by the Coding Method 48
2.10 Calculation Example 51
Bibliography 51
3 Element Analysis 53
3.1 Principle of Virtual Displacement 53
3.2 Element Displacement 56
3.3 Element Strain and Stress 57
3.4 Nodal Force and Element Stiffness Matrix 57
3.5 Nodal Load 59
3.6 Application Examples of the Principle of Virtual Displacements: Beam Element 61
3.7 Strain Energy and Complementary Strain Energy 64
3.8 Principle of Minimum Potential Energy 65
3.9 Minimum Complementary Energy Principle 69
3.10 Hybrid Element 70
3.11 Hybrid Element Example: Plane Rectangular Element 73
3.12 Mixed Energy Principle 75
3.13 Composite Element 77
Bibliography 79
4 Global Analysis 81
4.1 Nodal Equilibrium Equation 81
4.2 Application of the Principle of Minimum Potential Energy 82
4.3 The Low Limit Property of the Solution of Minimum Potential Energy 84
4.4 The Convergence of Solutions 85
4.5 Analysis of the Substructure 88
Bibliography 91
5 High-Order Element of Plane Problem 93
5.1 Rectangular Elements 93
5.2 Area Coordinates 97
5.3 High-Order Triangular Element 100
Bibliography 104
6 Axisymmetrical Problems in Theory of Elasticity 105
6.1 Stresses Due to Axisymmetrical Loads 105
6.2 Antisymmetrical Load 110
Bibliography 114
7 Spatial Problems in Theory of Elasticity 115
7.1 Constant Strain Tetrahedral Elements 115
7.2 Volume Coordinates 121
7.3 High-Order Tetrahedral Elements 122
Bibliography 124
8 Shape Function, Coordinate Transformation, Isoparametric Element, and Infinite Element 125
8.1 Definition of Shape Functions 125
8.2 One-Dimensional Shape Functions 126
8.3 Two-Dimensional Shape Function 127
8.4 Three-Dimensional Shape Function 130
8.5 Coordinate Transformation 136
8.6 Displacement Function 145
8.7 Element Strain 147
8.8 Stiffness Matrix 151
8.9 Nodal Loads 153
8.10 Degradation of Isoparametric Elements 155
8.11 Numerical Integration 161
8.13 Stress Refinement and Stress Smoothing 168
8.14 Elemental Form and Layout 173
8.15 Inconsistent Elements 176
8.16 Patch Test 179
8.17 Triangular, Tetrahedral, and Prismatic Curved-Side Elements 183
8.18 Vector Computation in Isoparametric Elements 187
8.19 Numerical Examples of Isoparametric Elements 191
8.20 Infinite Elements 192
&nbs
About the Author xxv
1 Introduction to Finite ElementMethod andMatrix Analysis of Truss 1
1.1 Introduction to Finite Element Method 1
1.2 Truss Analysis Overview 5
1.3 Stiffness Matrix of Horizontal Bar Element 8
1.4 Stiffness Matrix of Inclined Bar Element 10
1.5 Coordinate Transformation 11
1.6 Nodal Equilibrium Equation and Global Stiffness Matrix 14
1.7 Treatment of Boundary Conditions 15
Bibliography 23
2 Plane Problems in Theory of Elasticity 25
2.1 Discretization of Continuous Medium 25
2.2 Displacement Function 28
2.3 Element Strain 30
2.4 Initial Strain 31
2.5 Element Stress 32
2.6 Equivalent Nodal Force and Element Stiffness Matrix 35
2.7 Nodal Loads 40
2.8 Nodal Equilibrium Equation and Global Stiffness Matrix 43
2.9 Establish the Global Stiffness Matrix by the Coding Method 48
2.10 Calculation Example 51
Bibliography 51
3 Element Analysis 53
3.1 Principle of Virtual Displacement 53
3.2 Element Displacement 56
3.3 Element Strain and Stress 57
3.4 Nodal Force and Element Stiffness Matrix 57
3.5 Nodal Load 59
3.6 Application Examples of the Principle of Virtual Displacements: Beam Element 61
3.7 Strain Energy and Complementary Strain Energy 64
3.8 Principle of Minimum Potential Energy 65
3.9 Minimum Complementary Energy Principle 69
3.10 Hybrid Element 70
3.11 Hybrid Element Example: Plane Rectangular Element 73
3.12 Mixed Energy Principle 75
3.13 Composite Element 77
Bibliography 79
4 Global Analysis 81
4.1 Nodal Equilibrium Equation 81
4.2 Application of the Principle of Minimum Potential Energy 82
4.3 The Low Limit Property of the Solution of Minimum Potential Energy 84
4.4 The Convergence of Solutions 85
4.5 Analysis of the Substructure 88
Bibliography 91
5 High-Order Element of Plane Problem 93
5.1 Rectangular Elements 93
5.2 Area Coordinates 97
5.3 High-Order Triangular Element 100
Bibliography 104
6 Axisymmetrical Problems in Theory of Elasticity 105
6.1 Stresses Due to Axisymmetrical Loads 105
6.2 Antisymmetrical Load 110
Bibliography 114
7 Spatial Problems in Theory of Elasticity 115
7.1 Constant Strain Tetrahedral Elements 115
7.2 Volume Coordinates 121
7.3 High-Order Tetrahedral Elements 122
Bibliography 124
8 Shape Function, Coordinate Transformation, Isoparametric Element, and Infinite Element 125
8.1 Definition of Shape Functions 125
8.2 One-Dimensional Shape Functions 126
8.3 Two-Dimensional Shape Function 127
8.4 Three-Dimensional Shape Function 130
8.5 Coordinate Transformation 136
8.6 Displacement Function 145
8.7 Element Strain 147
8.8 Stiffness Matrix 151
8.9 Nodal Loads 153
8.10 Degradation of Isoparametric Elements 155
8.11 Numerical Integration 161
8.13 Stress Refinement and Stress Smoothing 168
8.14 Elemental Form and Layout 173
8.15 Inconsistent Elements 176
8.16 Patch Test 179
8.17 Triangular, Tetrahedral, and Prismatic Curved-Side Elements 183
8.18 Vector Computation in Isoparametric Elements 187
8.19 Numerical Examples of Isoparametric Elements 191
8.20 Infinite Elements 192
&nbs