The Good Microbes in Medicine, Food Production, Biotechnology, Bioremediation, and Agriculture (eBook, PDF)
Redaktion: De Bruijn, Frans J.; Thomashow, Linda; Dowling, David N.; Sauer, Michael; Cocolin, Luca S.; Smidt, Hauke
178,99 €
178,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
178,99 €
Als Download kaufen
178,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
178,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
The Good Microbes in Medicine, Food Production, Biotechnology, Bioremediation, and Agriculture (eBook, PDF)
Redaktion: De Bruijn, Frans J.; Thomashow, Linda; Dowling, David N.; Sauer, Michael; Cocolin, Luca S.; Smidt, Hauke
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 21.54MB
Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 592
- Erscheinungstermin: 27. September 2022
- Englisch
- ISBN-13: 9781119762379
- Artikelnr.: 66253580
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Frans J. de Bruijn, PhD, was Director of the Laboratory for Plant-Microbe Interactions and Environment, a mixed INRAE/CNRS research facility with about 100 scientists and support staff in Toulouse, France. He is presently Director of Recherche DR1 and editor of multiple books on a variety of topics. Hauke Schmidt, PhD, is a member of the management team at the National BE-Basic Program and Senior Scientist and Theme Council member at TI Food & Nutrition. Luca S. Cocolin is Full Professor in the Department of Agricultural, Forest, and Food Sciences at the University of Torino, Italy. Michael Sauer is Assistant Professor at the Department of Biotechnology of BOKU-University of Natural Resources and Life Sciences in Vienna, Austria. David Dowling, PhD, co-founded MicroGen Biotechnology Limited and is the Head of the Faculty of Science at the Institute of Technology Carlow. Linda Thomashow, PhD, Research Geneticist at the USDA Agricultural Research Service's Wheat Health, Genetics and Quality Research Unit and Professor in Plant Pathology and Molecular Plant Sciences at Washington State University, USA.
Preface xxi
List of Contributors xxii
Acknowledgments xxviii
Introduction xxix
Section 1 Good Microbes in Medicine 1
Co-Edited by Hauke Smidt and Frans J. de Bruijn
Chapter 1 Modern Medicine Relies on the Help of Microorganisms - From Vaccine Production to Cancer Medication 3
Letícia Parizotto, Larissa Brumano, Eduardo Kleingesinds, and Adalberto Pessoa Junior
1.1 Introduction: Good Microorganisms and Our Health 3
1.2 Bad Microorganisms: Epidemics Boosted Modern Medicine 4
1.3 Antimicrobial Peptides: A New Therapeutic Alternative to Antibiotics? 4
1.4 Microorganisms as Tools: Recombinant DNA Technology (rDNAT) 5
1.5 Vaccines: The Use of Microorganisms in the Frontline against Diseases 7
1.6 Anticancer Drugs: Many Ways to Fight Cancer with Good Microorganisms 8
1.7 Gene Therapy: The Future of Modern Medicine 9
1.8 Concluding Remarks and Perspectives 10
Acknowledgments 10
Chapter 2 How Nursing Mothers Protect Their Babies with Bifidobacteria 13
Nick M. Jensen, Britta E. Heiss, and David A. Mills
2.1 Bifidobacterium Species and Diversity 13
2.2 Human Milk Oligosaccharides 14
2.3 Bifidobacterial Metabolism 14
2.4 Benefits of Bifidobacterium 15
2.5 Global Distribution of Bifidobacterium 16
2.6 Supporting Persistent Bifidobacterium Populations 16
2.7 Summary 18
Acknowledgments 18
Chapter 3 Gut Microbiome and the Immune System: Role in Vaccine Response 22
Helena Ipe Pinheiro Guimaraes, Jorgen De Jonge, Debbie Van Baarle, and Susana Fuentes
3.1 Immunology of Vaccines 22
3.1.1 Induction of Protective Immunity by Vaccination 22
3.1.2 Evolution of Vaccines 23
3.1.3 Vaccine Limitations 24
3.2 Gut Microbiome and the Immune System 24
3.2.1 Microbiome Development in Life 24
3.2.2 Host-microbe Interactions: Impact on Health 25
3.3 Microbiome and Vaccine Response 27
3.3.1 Mechanistic Studies in Animal Models 27
3.4 Role of the Microbiome in Vaccine Response in Human Studies 28
3.5 Conclusions and Future Perspectives 29
Chapter 4 Probiotics for Prevention or Treatment of Food Allergies 35
Agnes S. Y. Leung, Wenyin Loh, and Mimi L. K. Tang
4.1 Introduction 35
4.2 Prevention of Food Allergy 36
4.3 Treatment of Food Allergy 37
4.3.1 Clinical Use of Probiotics in Food Immunotherapy 38
4.3.2 Preclinical Studies of the Effects of Probiotics for Treatment of Food Allergy 39
4.4 Conclusion 39
Chapter 5 COVID-19, Microbiota, and Probiotics 43
Marta Mozota, Leónides Fernández, and Juan Miguel Rodríguez
5.1 Introduction 43
5.2 Relationship between COVID-19 and the Microbiota 44
5.3 Respiratory Microbiota in Patients with COVID-19 45
5.4 Gut Microbiota in Patients with COVID-19 45
5.5 Probiotics and COVID-19 46
Chapter 6 Underarm Body Odor, the Microbiome, and Probiotic Treatment 52
Britta De Pessemier, Rune Daneels, Tom Van De Wiele, and Chris Callewaert
6.1 Skin Structure and Function 52
6.2 Sweat 52
6.2.1 Sweat Glands
6.2.1.1 Eccrine Glands 53
6.2.1.2 Apocrine Glands 53
6.2.1.3 Apoeccrine Glands 53
6.2.1.4 Sebaceous Glands 54
6.3 Skin and Underarm Microbiome 54
6.4 Axillary Microbiome 54
6.5 Bromhidrosis Pathophysiology 56
6.5.1 Steroid-based Malodor 56
6.5.2 Long-chain Fatty Acids (LCFAs) 56
6.5.3 VFA-based Malodor 57
6.5.4 Thio
List of Contributors xxii
Acknowledgments xxviii
Introduction xxix
Section 1 Good Microbes in Medicine 1
Co-Edited by Hauke Smidt and Frans J. de Bruijn
Chapter 1 Modern Medicine Relies on the Help of Microorganisms - From Vaccine Production to Cancer Medication 3
Letícia Parizotto, Larissa Brumano, Eduardo Kleingesinds, and Adalberto Pessoa Junior
1.1 Introduction: Good Microorganisms and Our Health 3
1.2 Bad Microorganisms: Epidemics Boosted Modern Medicine 4
1.3 Antimicrobial Peptides: A New Therapeutic Alternative to Antibiotics? 4
1.4 Microorganisms as Tools: Recombinant DNA Technology (rDNAT) 5
1.5 Vaccines: The Use of Microorganisms in the Frontline against Diseases 7
1.6 Anticancer Drugs: Many Ways to Fight Cancer with Good Microorganisms 8
1.7 Gene Therapy: The Future of Modern Medicine 9
1.8 Concluding Remarks and Perspectives 10
Acknowledgments 10
Chapter 2 How Nursing Mothers Protect Their Babies with Bifidobacteria 13
Nick M. Jensen, Britta E. Heiss, and David A. Mills
2.1 Bifidobacterium Species and Diversity 13
2.2 Human Milk Oligosaccharides 14
2.3 Bifidobacterial Metabolism 14
2.4 Benefits of Bifidobacterium 15
2.5 Global Distribution of Bifidobacterium 16
2.6 Supporting Persistent Bifidobacterium Populations 16
2.7 Summary 18
Acknowledgments 18
Chapter 3 Gut Microbiome and the Immune System: Role in Vaccine Response 22
Helena Ipe Pinheiro Guimaraes, Jorgen De Jonge, Debbie Van Baarle, and Susana Fuentes
3.1 Immunology of Vaccines 22
3.1.1 Induction of Protective Immunity by Vaccination 22
3.1.2 Evolution of Vaccines 23
3.1.3 Vaccine Limitations 24
3.2 Gut Microbiome and the Immune System 24
3.2.1 Microbiome Development in Life 24
3.2.2 Host-microbe Interactions: Impact on Health 25
3.3 Microbiome and Vaccine Response 27
3.3.1 Mechanistic Studies in Animal Models 27
3.4 Role of the Microbiome in Vaccine Response in Human Studies 28
3.5 Conclusions and Future Perspectives 29
Chapter 4 Probiotics for Prevention or Treatment of Food Allergies 35
Agnes S. Y. Leung, Wenyin Loh, and Mimi L. K. Tang
4.1 Introduction 35
4.2 Prevention of Food Allergy 36
4.3 Treatment of Food Allergy 37
4.3.1 Clinical Use of Probiotics in Food Immunotherapy 38
4.3.2 Preclinical Studies of the Effects of Probiotics for Treatment of Food Allergy 39
4.4 Conclusion 39
Chapter 5 COVID-19, Microbiota, and Probiotics 43
Marta Mozota, Leónides Fernández, and Juan Miguel Rodríguez
5.1 Introduction 43
5.2 Relationship between COVID-19 and the Microbiota 44
5.3 Respiratory Microbiota in Patients with COVID-19 45
5.4 Gut Microbiota in Patients with COVID-19 45
5.5 Probiotics and COVID-19 46
Chapter 6 Underarm Body Odor, the Microbiome, and Probiotic Treatment 52
Britta De Pessemier, Rune Daneels, Tom Van De Wiele, and Chris Callewaert
6.1 Skin Structure and Function 52
6.2 Sweat 52
6.2.1 Sweat Glands
6.2.1.1 Eccrine Glands 53
6.2.1.2 Apocrine Glands 53
6.2.1.3 Apoeccrine Glands 53
6.2.1.4 Sebaceous Glands 54
6.3 Skin and Underarm Microbiome 54
6.4 Axillary Microbiome 54
6.5 Bromhidrosis Pathophysiology 56
6.5.1 Steroid-based Malodor 56
6.5.2 Long-chain Fatty Acids (LCFAs) 56
6.5.3 VFA-based Malodor 57
6.5.4 Thio
Preface xxi
List of Contributors xxii
Acknowledgments xxviii
Introduction xxix
Section 1 Good Microbes in Medicine 1
Co-Edited by Hauke Smidt and Frans J. de Bruijn
Chapter 1 Modern Medicine Relies on the Help of Microorganisms - From Vaccine Production to Cancer Medication 3
Letícia Parizotto, Larissa Brumano, Eduardo Kleingesinds, and Adalberto Pessoa Junior
1.1 Introduction: Good Microorganisms and Our Health 3
1.2 Bad Microorganisms: Epidemics Boosted Modern Medicine 4
1.3 Antimicrobial Peptides: A New Therapeutic Alternative to Antibiotics? 4
1.4 Microorganisms as Tools: Recombinant DNA Technology (rDNAT) 5
1.5 Vaccines: The Use of Microorganisms in the Frontline against Diseases 7
1.6 Anticancer Drugs: Many Ways to Fight Cancer with Good Microorganisms 8
1.7 Gene Therapy: The Future of Modern Medicine 9
1.8 Concluding Remarks and Perspectives 10
Acknowledgments 10
Chapter 2 How Nursing Mothers Protect Their Babies with Bifidobacteria 13
Nick M. Jensen, Britta E. Heiss, and David A. Mills
2.1 Bifidobacterium Species and Diversity 13
2.2 Human Milk Oligosaccharides 14
2.3 Bifidobacterial Metabolism 14
2.4 Benefits of Bifidobacterium 15
2.5 Global Distribution of Bifidobacterium 16
2.6 Supporting Persistent Bifidobacterium Populations 16
2.7 Summary 18
Acknowledgments 18
Chapter 3 Gut Microbiome and the Immune System: Role in Vaccine Response 22
Helena Ipe Pinheiro Guimaraes, Jorgen De Jonge, Debbie Van Baarle, and Susana Fuentes
3.1 Immunology of Vaccines 22
3.1.1 Induction of Protective Immunity by Vaccination 22
3.1.2 Evolution of Vaccines 23
3.1.3 Vaccine Limitations 24
3.2 Gut Microbiome and the Immune System 24
3.2.1 Microbiome Development in Life 24
3.2.2 Host-microbe Interactions: Impact on Health 25
3.3 Microbiome and Vaccine Response 27
3.3.1 Mechanistic Studies in Animal Models 27
3.4 Role of the Microbiome in Vaccine Response in Human Studies 28
3.5 Conclusions and Future Perspectives 29
Chapter 4 Probiotics for Prevention or Treatment of Food Allergies 35
Agnes S. Y. Leung, Wenyin Loh, and Mimi L. K. Tang
4.1 Introduction 35
4.2 Prevention of Food Allergy 36
4.3 Treatment of Food Allergy 37
4.3.1 Clinical Use of Probiotics in Food Immunotherapy 38
4.3.2 Preclinical Studies of the Effects of Probiotics for Treatment of Food Allergy 39
4.4 Conclusion 39
Chapter 5 COVID-19, Microbiota, and Probiotics 43
Marta Mozota, Leónides Fernández, and Juan Miguel Rodríguez
5.1 Introduction 43
5.2 Relationship between COVID-19 and the Microbiota 44
5.3 Respiratory Microbiota in Patients with COVID-19 45
5.4 Gut Microbiota in Patients with COVID-19 45
5.5 Probiotics and COVID-19 46
Chapter 6 Underarm Body Odor, the Microbiome, and Probiotic Treatment 52
Britta De Pessemier, Rune Daneels, Tom Van De Wiele, and Chris Callewaert
6.1 Skin Structure and Function 52
6.2 Sweat 52
6.2.1 Sweat Glands
6.2.1.1 Eccrine Glands 53
6.2.1.2 Apocrine Glands 53
6.2.1.3 Apoeccrine Glands 53
6.2.1.4 Sebaceous Glands 54
6.3 Skin and Underarm Microbiome 54
6.4 Axillary Microbiome 54
6.5 Bromhidrosis Pathophysiology 56
6.5.1 Steroid-based Malodor 56
6.5.2 Long-chain Fatty Acids (LCFAs) 56
6.5.3 VFA-based Malodor 57
6.5.4 Thio
List of Contributors xxii
Acknowledgments xxviii
Introduction xxix
Section 1 Good Microbes in Medicine 1
Co-Edited by Hauke Smidt and Frans J. de Bruijn
Chapter 1 Modern Medicine Relies on the Help of Microorganisms - From Vaccine Production to Cancer Medication 3
Letícia Parizotto, Larissa Brumano, Eduardo Kleingesinds, and Adalberto Pessoa Junior
1.1 Introduction: Good Microorganisms and Our Health 3
1.2 Bad Microorganisms: Epidemics Boosted Modern Medicine 4
1.3 Antimicrobial Peptides: A New Therapeutic Alternative to Antibiotics? 4
1.4 Microorganisms as Tools: Recombinant DNA Technology (rDNAT) 5
1.5 Vaccines: The Use of Microorganisms in the Frontline against Diseases 7
1.6 Anticancer Drugs: Many Ways to Fight Cancer with Good Microorganisms 8
1.7 Gene Therapy: The Future of Modern Medicine 9
1.8 Concluding Remarks and Perspectives 10
Acknowledgments 10
Chapter 2 How Nursing Mothers Protect Their Babies with Bifidobacteria 13
Nick M. Jensen, Britta E. Heiss, and David A. Mills
2.1 Bifidobacterium Species and Diversity 13
2.2 Human Milk Oligosaccharides 14
2.3 Bifidobacterial Metabolism 14
2.4 Benefits of Bifidobacterium 15
2.5 Global Distribution of Bifidobacterium 16
2.6 Supporting Persistent Bifidobacterium Populations 16
2.7 Summary 18
Acknowledgments 18
Chapter 3 Gut Microbiome and the Immune System: Role in Vaccine Response 22
Helena Ipe Pinheiro Guimaraes, Jorgen De Jonge, Debbie Van Baarle, and Susana Fuentes
3.1 Immunology of Vaccines 22
3.1.1 Induction of Protective Immunity by Vaccination 22
3.1.2 Evolution of Vaccines 23
3.1.3 Vaccine Limitations 24
3.2 Gut Microbiome and the Immune System 24
3.2.1 Microbiome Development in Life 24
3.2.2 Host-microbe Interactions: Impact on Health 25
3.3 Microbiome and Vaccine Response 27
3.3.1 Mechanistic Studies in Animal Models 27
3.4 Role of the Microbiome in Vaccine Response in Human Studies 28
3.5 Conclusions and Future Perspectives 29
Chapter 4 Probiotics for Prevention or Treatment of Food Allergies 35
Agnes S. Y. Leung, Wenyin Loh, and Mimi L. K. Tang
4.1 Introduction 35
4.2 Prevention of Food Allergy 36
4.3 Treatment of Food Allergy 37
4.3.1 Clinical Use of Probiotics in Food Immunotherapy 38
4.3.2 Preclinical Studies of the Effects of Probiotics for Treatment of Food Allergy 39
4.4 Conclusion 39
Chapter 5 COVID-19, Microbiota, and Probiotics 43
Marta Mozota, Leónides Fernández, and Juan Miguel Rodríguez
5.1 Introduction 43
5.2 Relationship between COVID-19 and the Microbiota 44
5.3 Respiratory Microbiota in Patients with COVID-19 45
5.4 Gut Microbiota in Patients with COVID-19 45
5.5 Probiotics and COVID-19 46
Chapter 6 Underarm Body Odor, the Microbiome, and Probiotic Treatment 52
Britta De Pessemier, Rune Daneels, Tom Van De Wiele, and Chris Callewaert
6.1 Skin Structure and Function 52
6.2 Sweat 52
6.2.1 Sweat Glands
6.2.1.1 Eccrine Glands 53
6.2.1.2 Apocrine Glands 53
6.2.1.3 Apoeccrine Glands 53
6.2.1.4 Sebaceous Glands 54
6.3 Skin and Underarm Microbiome 54
6.4 Axillary Microbiome 54
6.5 Bromhidrosis Pathophysiology 56
6.5.1 Steroid-based Malodor 56
6.5.2 Long-chain Fatty Acids (LCFAs) 56
6.5.3 VFA-based Malodor 57
6.5.4 Thio