The Handbook of Polyhydroxyalkanoates (eBook, ePUB)
Kinetics, Bioengineering, and Industrial Aspects
Redaktion: Koller, Martin
64,95 €
64,95 €
inkl. MwSt.
Sofort per Download lieferbar
32 °P sammeln
64,95 €
Als Download kaufen
64,95 €
inkl. MwSt.
Sofort per Download lieferbar
32 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
64,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
32 °P sammeln
The Handbook of Polyhydroxyalkanoates (eBook, ePUB)
Kinetics, Bioengineering, and Industrial Aspects
Redaktion: Koller, Martin
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This volume covers kinetics, bioengineering and industrial aspects and focusses on thermodynamic and mathematical considerations of PHA biosynthesis, bioengineering aspects regarding bioreactor design and downstream processing for PHA recovery from microbial biomass.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 12.56MB
Andere Kunden interessierten sich auch für
- The Handbook of Polyhydroxyalkanoates (eBook, ePUB)64,95 €
- The Handbook of Polyhydroxyalkanoates (eBook, ePUB)64,95 €
- Sharon Lam Po TangDressings for Advanced Wound Care (eBook, ePUB)88,95 €
- The Handbook of Polyhydroxyalkanoates (eBook, PDF)64,95 €
- Gibin GeorgeFundamentals of Perovskite Oxides (eBook, ePUB)57,95 €
- Michael B. SmithA Q&A Approach to Organic Chemistry (eBook, ePUB)48,95 €
- Photosynthetic Protein-Based Photovoltaics (eBook, ePUB)48,95 €
-
-
-
This volume covers kinetics, bioengineering and industrial aspects and focusses on thermodynamic and mathematical considerations of PHA biosynthesis, bioengineering aspects regarding bioreactor design and downstream processing for PHA recovery from microbial biomass.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 514
- Erscheinungstermin: 19. Oktober 2020
- Englisch
- ISBN-13: 9781000173666
- Artikelnr.: 60146506
- Verlag: Taylor & Francis
- Seitenzahl: 514
- Erscheinungstermin: 19. Oktober 2020
- Englisch
- ISBN-13: 9781000173666
- Artikelnr.: 60146506
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Martin Koller was awarded his PhD degree by Graz University of Technology, Austria, for his thesis on polyhydroxyalkanoate (PHA) production from dairy surplus streams which was enabled by the EU-project WHEYPOL ("Dairy industry waste as source for sustainable polymeric material production"), supervised by Gerhart Braunegg, one of the most eminent PHA pioneers. As senior researcher, he worked on bio-mediated PHA production, encompassing development of continuous and discontinuous fermentation processes, and novel downstream processing techniques for sustainable PHA recovery. His research focused on cost-efficient PHA production from surplus materials by bacteria and haloarchaea and, to a minor extent, to the development for PHA for biomedical use. He currently holds more than 70 Web-of-science listed articles in high ranked scientific journals (h-index 23), authored twelve chapters in scientific books, edited three scientific books and four journal special issues on PHA, gave plenty of invited and plenary lectures at scientific conferences, and supports the editorial teams of several distinguished journals. Moreover, Martin Koller coordinated the EU-FP7 project ANIMPOL ("Biotechnological conversion of carbon containing wastes for eco-efficient production of high added value products"), which, in close cooperation between academia and industry, investigated the conversion of animal processing industry¿s waste streams towards structurally diversified PHA and follow-up products. In addition to PHA exploration, he was also active in microalgal research and in biotechnological production of various marketable compounds from renewables by yeasts, chlorophyte, bacteria, archaea, fungi or lactobacilli. At the moment, Martin Koller is active as research manager and external supervisor for PHA-related projects.
1. An Introduction to the Thermodynamics Calculation of PHA Production in
Microbes 2. Mathematical Modelling for Advanced PHA Biosynthesis. 3.
Interconnection between PHA and Stress Robustness of Bacteria. 4. Linking
Salinity to Microbial Biopolyesters Biosynthesis: Polyhydroxyalkanoate
Production by Haloarchaea and Halophilic Eubacteria. 5. Role of Different
Bioreactor Types and Feeding Regimes in Polyhydroxyalkanoates Production.
6. Recovery of Polyhydroxyalkanoates from Microbial Biomass. 7.
Polyhydroxyalkanoates by Mixed Microbial Cultures: The Journey so Far and
Challenges Ahead. 8. PHA Production by Microbial Mixed Cultures and Organic
Waste of Urban Origin: Pilot Scale Evidences. 9. Production Quality Control
of Mixed Culture Poly(3-Hydroxbutyrate-co-3-Hydroxyvalerate) Blends Using
Full-Scale Municipal Activated Sludge and Non-Chlorinated Solvent
Extraction. 10. Economics and Industrial Aspects of PHA Production. 11.
Next Generation Industrial Biotechnology (NGIB) for PHA Production. 12. PHA
Biosynthesis Starting from Sucrose and Materials from Sugar Industry. 13.
LCA, Sustainability and Techno-economic Studies for PHA Production.
Microbes 2. Mathematical Modelling for Advanced PHA Biosynthesis. 3.
Interconnection between PHA and Stress Robustness of Bacteria. 4. Linking
Salinity to Microbial Biopolyesters Biosynthesis: Polyhydroxyalkanoate
Production by Haloarchaea and Halophilic Eubacteria. 5. Role of Different
Bioreactor Types and Feeding Regimes in Polyhydroxyalkanoates Production.
6. Recovery of Polyhydroxyalkanoates from Microbial Biomass. 7.
Polyhydroxyalkanoates by Mixed Microbial Cultures: The Journey so Far and
Challenges Ahead. 8. PHA Production by Microbial Mixed Cultures and Organic
Waste of Urban Origin: Pilot Scale Evidences. 9. Production Quality Control
of Mixed Culture Poly(3-Hydroxbutyrate-co-3-Hydroxyvalerate) Blends Using
Full-Scale Municipal Activated Sludge and Non-Chlorinated Solvent
Extraction. 10. Economics and Industrial Aspects of PHA Production. 11.
Next Generation Industrial Biotechnology (NGIB) for PHA Production. 12. PHA
Biosynthesis Starting from Sucrose and Materials from Sugar Industry. 13.
LCA, Sustainability and Techno-economic Studies for PHA Production.
1. An Introduction to the Thermodynamics Calculation of PHA Production in
Microbes 2. Mathematical Modelling for Advanced PHA Biosynthesis. 3.
Interconnection between PHA and Stress Robustness of Bacteria. 4. Linking
Salinity to Microbial Biopolyesters Biosynthesis: Polyhydroxyalkanoate
Production by Haloarchaea and Halophilic Eubacteria. 5. Role of Different
Bioreactor Types and Feeding Regimes in Polyhydroxyalkanoates Production.
6. Recovery of Polyhydroxyalkanoates from Microbial Biomass. 7.
Polyhydroxyalkanoates by Mixed Microbial Cultures: The Journey so Far and
Challenges Ahead. 8. PHA Production by Microbial Mixed Cultures and Organic
Waste of Urban Origin: Pilot Scale Evidences. 9. Production Quality Control
of Mixed Culture Poly(3-Hydroxbutyrate-co-3-Hydroxyvalerate) Blends Using
Full-Scale Municipal Activated Sludge and Non-Chlorinated Solvent
Extraction. 10. Economics and Industrial Aspects of PHA Production. 11.
Next Generation Industrial Biotechnology (NGIB) for PHA Production. 12. PHA
Biosynthesis Starting from Sucrose and Materials from Sugar Industry. 13.
LCA, Sustainability and Techno-economic Studies for PHA Production.
Microbes 2. Mathematical Modelling for Advanced PHA Biosynthesis. 3.
Interconnection between PHA and Stress Robustness of Bacteria. 4. Linking
Salinity to Microbial Biopolyesters Biosynthesis: Polyhydroxyalkanoate
Production by Haloarchaea and Halophilic Eubacteria. 5. Role of Different
Bioreactor Types and Feeding Regimes in Polyhydroxyalkanoates Production.
6. Recovery of Polyhydroxyalkanoates from Microbial Biomass. 7.
Polyhydroxyalkanoates by Mixed Microbial Cultures: The Journey so Far and
Challenges Ahead. 8. PHA Production by Microbial Mixed Cultures and Organic
Waste of Urban Origin: Pilot Scale Evidences. 9. Production Quality Control
of Mixed Culture Poly(3-Hydroxbutyrate-co-3-Hydroxyvalerate) Blends Using
Full-Scale Municipal Activated Sludge and Non-Chlorinated Solvent
Extraction. 10. Economics and Industrial Aspects of PHA Production. 11.
Next Generation Industrial Biotechnology (NGIB) for PHA Production. 12. PHA
Biosynthesis Starting from Sucrose and Materials from Sugar Industry. 13.
LCA, Sustainability and Techno-economic Studies for PHA Production.