48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
Als Download kaufen
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
Jetzt verschenken
48,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
  • Format: PDF

This book brings together current information on the families that make up the kinesin superfamily of molecular motors in one comprehensive text; an ideal reference for reseachers looking to make comparisons between different familiies, for specific information on a family, or simply for an overview of the kinesin superfamily.

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 56.49MB
Produktbeschreibung
This book brings together current information on the families that make up the kinesin superfamily of molecular motors in one comprehensive text; an ideal reference for reseachers looking to make comparisons between different familiies, for specific information on a family, or simply for an overview of the kinesin superfamily.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Claire T. Friel earned a BSc in Biochemistry from the University of Glasgow, UK, and carried out her PhD work on protein folding kinetics in the laboratory of Sheena Radford at the University of Leeds, UK. In 2006, she joined the group of Jonathon Howard at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, Germany. There, she solved the ATP turnover cycle of the microtubule depolymerising Kinesin-13, MCAK, and developed an interest in the kinesin superfamily of molecular motors. Since 2011, Claire has held the position of Assistant Professor at the University of Nottingham, UK. The research goals of the Friel lab are to understand the relationship between the kinesin motor domain sequence and the many functional properties of the kinesin superfamily and to understand the molecular mechanisms of proteins that regulate microtubule dynamics.