The first time I faced Syracuse conjecture I thought it was easier to start from any number n and to arrive to ni < n rather than fall down to 1. In this way I could not take into consideration even numbers, because if n is even then n → n/2 < n. So I had only to examine the odd numbers. In addition to the proof proposed by me, I have discovered many properties and peculiarities of this famous conjecture. It hides the magical harmony of odd numbers, and may be a type of law on the expansion of Cosmos based on the power of 2, as prophesied by Plato in some of his writings. So my work takes on a popular and didactic value of this marvelous conjecture. In this paper I have only used arithmetic and elementary number theory, but, in spite of its simple enunciation, Syracuse Conjecture is a difficult topic, therefore this article needs a lot of patience in reading for a well-understanding. I have considered that various applications and examples were needed for better explain my work.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, CY, CZ, D, DK, EW, E, FIN, F, GR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.