64,79 €
64,79 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
64,79 €
64,79 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
64,79 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
64,79 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: ePub

When equipped with a highly scalable machine learning (ML) platform, organizations can quickly scale the delivery of ML products for faster business value realization. There is a huge demand for skilled ML solutions architects in different industries, and this handbook will help you master the design patterns, architectural considerations, and the latest technology insights you'll need to become one.
You'll start by understanding ML fundamentals and how ML can be applied to solve real-world business problems. Once you've explored a few leading problem-solving ML algorithms, this book will
…mehr

  • Geräte: eReader
  • ohne Kopierschutz
  • eBook Hilfe
  • FamilySharing(5)
Produktbeschreibung
When equipped with a highly scalable machine learning (ML) platform, organizations can quickly scale the delivery of ML products for faster business value realization. There is a huge demand for skilled ML solutions architects in different industries, and this handbook will help you master the design patterns, architectural considerations, and the latest technology insights you'll need to become one.
You'll start by understanding ML fundamentals and how ML can be applied to solve real-world business problems. Once you've explored a few leading problem-solving ML algorithms, this book will help you tackle data management and get the most out of ML libraries such as TensorFlow and PyTorch.
Using open source technology such as Kubernetes/Kubeflow to build a data science environment and ML pipelines will be covered next, before moving on to building an enterprise ML architecture using Amazon Web Services (AWS). You'll also learn about security and governance considerations, advanced ML engineering techniques, and how to apply bias detection, explainability, and privacy in ML model development.
By the end of this book, you'll be able to design and build an ML platform to support common use cases and architecture patterns like a true professional.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
David Ping is an accomplished author and industry expert with over 28 years of experience in the field of data science and technology. He currently serves as the leader of a team of highly skilled data scientists and AI/ML solutions architects at AWS. In this role, he assists organizations worldwide in designing and implementing impactful AI/ML solutions to drive business success. David's extensive expertise spans a range of technical domains, including data science, ML solution and platform design, data management, AI risk, and AI governance. Prior to joining AWS, David held positions in renowned organizations such as JPMorgan, Credit Suisse, and Intel Corporation, where he contributed to the advancements of science and technology through engineering and leadership roles. With his wealth of experience and diverse skill set, David brings a unique perspective and invaluable insights to the field of AI/ML.