Caroline J. Klivans
The Mathematics of Chip-Firing (eBook, ePUB)
115,95 €
115,95 €
inkl. MwSt.
Sofort per Download lieferbar
58 °P sammeln
115,95 €
Als Download kaufen
115,95 €
inkl. MwSt.
Sofort per Download lieferbar
58 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
115,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
58 °P sammeln
Caroline J. Klivans
The Mathematics of Chip-Firing (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The Mathematics of Chip-firing is a solid introduction and overview of the growing field of chip-firing. It offers an appreciation for the richness and diversity of the subject. Chip-firing refers to a discrete dynamical system - a commodity is exchanged between sites of a network according to very simple local rules.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 9.97MB
Andere Kunden interessierten sich auch für
- Caroline J. KlivansThe Mathematics of Chip-Firing (eBook, PDF)115,95 €
- Handbook of Graph Theory (eBook, ePUB)214,95 €
- Pierre-Loic MeliotRepresentation Theory of Symmetric Groups (eBook, ePUB)46,95 €
- Peter D. Johnson Jr.Introduction to Information Theory and Data Compression (eBook, ePUB)65,95 €
- Handbook of Graph Theory (eBook, PDF)214,95 €
- Douglas JacobsonIntroduction to Network Security (eBook, ePUB)101,95 €
- Jonathan L. GrossCombinatorial Methods with Computer Applications (eBook, ePUB)120,95 €
-
-
-
The Mathematics of Chip-firing is a solid introduction and overview of the growing field of chip-firing. It offers an appreciation for the richness and diversity of the subject. Chip-firing refers to a discrete dynamical system - a commodity is exchanged between sites of a network according to very simple local rules.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 308
- Erscheinungstermin: 15. November 2018
- Englisch
- ISBN-13: 9781351801003
- Artikelnr.: 54672602
- Verlag: Taylor & Francis
- Seitenzahl: 308
- Erscheinungstermin: 15. November 2018
- Englisch
- ISBN-13: 9781351801003
- Artikelnr.: 54672602
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Caroline J. Klivans received a BA degree in mathematics from Cornell University and a PhD in applied mathematics from MIT. Currently, she is an Associate Professor in the Division of Applied Mathematics at Brown University. She is also an Associate Director of ICERM (Institute for Computational and Experimental Research in Mathematics). Before coming to Brown she held positions at MSRI, Cornell and the University of Chicago. Her research is in algebraic, geometric and topological combinatorics.
Introduction
A brief introduction. Origins/History.
Chip-firing on Finite Graphs
The chip-firing process. Confluence. Stabilization. Toppling time.
Stabilization with a sink. Long-term stable configurations. The sandpile
Markov chain.
Spanning Trees
Spanning trees. Statistics on Trees. Merino's Theorem. Cori-Le Borgne
bijection. Acyclic orientations. Parking functions. Dominoes. Avalanche
polynomials.
Sandpile Groups
Toppling dynamics. Group of chip-firing equivalence. Identity.
Combinatorial invariance. Sandpile groups and invariant factors.
Discriminant groups. Sandpile torsors.
Pattern Formation
Compelling visualizations. Infinite graphs. The one-dimensional grid.
Labeled chip-firing. Two and more dimensional grids. Other lattices. The
identity element.
Avalanche Finite Systems
M-matrices. Chip-firing on M-matrices. Stability. Burning. Directed graphs.
Cartan matrices as M-matrices. M-pairings.
Higher Dimensions
An illustrative example. Cell complexes. Combinatorial Laplacians.
Chip-firing in higher dimensions. The sandpile group. Higher-dimensional
trees. Sandpile groups. Cuts and flows. Stability.
Divisors
Divisors on curves. The Picard group and Abel-Jacobi theory. Riemann-Roch
Theorems. Torelli's Theorem. The Pic^g (G) torus. Metric graphs and
tropical geometry. Arithmetic geometry. Arithmetical graphs. Riemann-Roch
for lattices. Two variable zeta-functions. Enumerating arithmetical
structures.
Ideals
Ideals. Toppling ideals. Tree ideals. Resolutions. Critical ideals.
Riemann-Roch for monomial ideals.
A brief introduction. Origins/History.
Chip-firing on Finite Graphs
The chip-firing process. Confluence. Stabilization. Toppling time.
Stabilization with a sink. Long-term stable configurations. The sandpile
Markov chain.
Spanning Trees
Spanning trees. Statistics on Trees. Merino's Theorem. Cori-Le Borgne
bijection. Acyclic orientations. Parking functions. Dominoes. Avalanche
polynomials.
Sandpile Groups
Toppling dynamics. Group of chip-firing equivalence. Identity.
Combinatorial invariance. Sandpile groups and invariant factors.
Discriminant groups. Sandpile torsors.
Pattern Formation
Compelling visualizations. Infinite graphs. The one-dimensional grid.
Labeled chip-firing. Two and more dimensional grids. Other lattices. The
identity element.
Avalanche Finite Systems
M-matrices. Chip-firing on M-matrices. Stability. Burning. Directed graphs.
Cartan matrices as M-matrices. M-pairings.
Higher Dimensions
An illustrative example. Cell complexes. Combinatorial Laplacians.
Chip-firing in higher dimensions. The sandpile group. Higher-dimensional
trees. Sandpile groups. Cuts and flows. Stability.
Divisors
Divisors on curves. The Picard group and Abel-Jacobi theory. Riemann-Roch
Theorems. Torelli's Theorem. The Pic^g (G) torus. Metric graphs and
tropical geometry. Arithmetic geometry. Arithmetical graphs. Riemann-Roch
for lattices. Two variable zeta-functions. Enumerating arithmetical
structures.
Ideals
Ideals. Toppling ideals. Tree ideals. Resolutions. Critical ideals.
Riemann-Roch for monomial ideals.
Introduction
A brief introduction. Origins/History.
Chip-firing on Finite Graphs
The chip-firing process. Confluence. Stabilization. Toppling time.
Stabilization with a sink. Long-term stable configurations. The sandpile
Markov chain.
Spanning Trees
Spanning trees. Statistics on Trees. Merino's Theorem. Cori-Le Borgne
bijection. Acyclic orientations. Parking functions. Dominoes. Avalanche
polynomials.
Sandpile Groups
Toppling dynamics. Group of chip-firing equivalence. Identity.
Combinatorial invariance. Sandpile groups and invariant factors.
Discriminant groups. Sandpile torsors.
Pattern Formation
Compelling visualizations. Infinite graphs. The one-dimensional grid.
Labeled chip-firing. Two and more dimensional grids. Other lattices. The
identity element.
Avalanche Finite Systems
M-matrices. Chip-firing on M-matrices. Stability. Burning. Directed graphs.
Cartan matrices as M-matrices. M-pairings.
Higher Dimensions
An illustrative example. Cell complexes. Combinatorial Laplacians.
Chip-firing in higher dimensions. The sandpile group. Higher-dimensional
trees. Sandpile groups. Cuts and flows. Stability.
Divisors
Divisors on curves. The Picard group and Abel-Jacobi theory. Riemann-Roch
Theorems. Torelli's Theorem. The Pic^g (G) torus. Metric graphs and
tropical geometry. Arithmetic geometry. Arithmetical graphs. Riemann-Roch
for lattices. Two variable zeta-functions. Enumerating arithmetical
structures.
Ideals
Ideals. Toppling ideals. Tree ideals. Resolutions. Critical ideals.
Riemann-Roch for monomial ideals.
A brief introduction. Origins/History.
Chip-firing on Finite Graphs
The chip-firing process. Confluence. Stabilization. Toppling time.
Stabilization with a sink. Long-term stable configurations. The sandpile
Markov chain.
Spanning Trees
Spanning trees. Statistics on Trees. Merino's Theorem. Cori-Le Borgne
bijection. Acyclic orientations. Parking functions. Dominoes. Avalanche
polynomials.
Sandpile Groups
Toppling dynamics. Group of chip-firing equivalence. Identity.
Combinatorial invariance. Sandpile groups and invariant factors.
Discriminant groups. Sandpile torsors.
Pattern Formation
Compelling visualizations. Infinite graphs. The one-dimensional grid.
Labeled chip-firing. Two and more dimensional grids. Other lattices. The
identity element.
Avalanche Finite Systems
M-matrices. Chip-firing on M-matrices. Stability. Burning. Directed graphs.
Cartan matrices as M-matrices. M-pairings.
Higher Dimensions
An illustrative example. Cell complexes. Combinatorial Laplacians.
Chip-firing in higher dimensions. The sandpile group. Higher-dimensional
trees. Sandpile groups. Cuts and flows. Stability.
Divisors
Divisors on curves. The Picard group and Abel-Jacobi theory. Riemann-Roch
Theorems. Torelli's Theorem. The Pic^g (G) torus. Metric graphs and
tropical geometry. Arithmetic geometry. Arithmetical graphs. Riemann-Roch
for lattices. Two variable zeta-functions. Enumerating arithmetical
structures.
Ideals
Ideals. Toppling ideals. Tree ideals. Resolutions. Critical ideals.
Riemann-Roch for monomial ideals.