Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Maximum principles are bedrock results in the theory of second order elliptic equations. This principle, simple enough in essence, lends itself to a quite remarkable number of subtle uses when combined appropriately with other notions. Intended for a wide audience, the book provides a clear and comprehensive explanation of the various maximum principles available in elliptic theory, from their beginning for linear equations to recent work on nonlinear and singular equations.
Maximum principles are bedrock results in the theory of second order elliptic equations. This principle, simple enough in essence, lends itself to a quite remarkable number of subtle uses when combined appropriately with other notions. Intended for a wide audience, the book provides a clear and comprehensive explanation of the various maximum principles available in elliptic theory, from their beginning for linear equations to recent work on nonlinear and singular equations.
and Preliminaries.- Tangency and Comparison Theorems for Elliptic Inequalities.- Maximum Principles for Divergence Structure Elliptic Differential Inequalities.- Boundary Value Problems for Nonlinear Ordinary Differential Equations.- The Strong Maximum Principle and the Compact Support Principle.- Non-homogeneous Divergence Structure Inequalities.- The Harnack Inequality.- Applications.
and Preliminaries.- Tangency and Comparison Theorems for Elliptic Inequalities.- Maximum Principles for Divergence Structure Elliptic Differential Inequalities.- Boundary Value Problems for Nonlinear Ordinary Differential Equations.- The Strong Maximum Principle and the Compact Support Principle.- Non-homogeneous Divergence Structure Inequalities.- The Harnack Inequality.- Applications.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/neu