The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetics Problems (eBook, PDF)
Alle Infos zum eBook verschenken
The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetics Problems (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetic Problems provides a detailed and instructional overview of implementing MLFMA. The book: * Presents a comprehensive treatment of the MLFMA algorithm, including basic linear algebra concepts, recent developments on the parallel computation, and a number of application examples * Covers solutions of electromagnetic problems involving dielectric objects and perfectly-conducting objects * Discusses applications including scattering from airborne targets, scattering from red blood cells, radiation…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 69.71MB
- Ozgur ErgulThe Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetics Problems (eBook, ePUB)140,99 €
- Xin-Qing ShengEssentials of Computational Electromagnetics (eBook, PDF)111,99 €
- Dragan PoljakDeterministic and Stochastic Modeling in Computational Electromagnetics (eBook, PDF)107,99 €
- Mei Song TongThe Nystrom Method in Electromagnetics (eBook, PDF)139,99 €
- Yu ZhangParallel Solution of Integral Equation-Based EM Problems in the Frequency Domain (eBook, PDF)112,99 €
- Dipak L. SenguptaApplied Electromagnetics and Electromagnetic Compatibility (eBook, PDF)112,99 €
- Pierre SaguetNumerical Analysis in Electromagnetics (eBook, PDF)139,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Wiley-Blackwell
- Seitenzahl: 472
- Erscheinungstermin: 9. April 2014
- Englisch
- ISBN-13: 9781118844908
- Artikelnr.: 40781088
- Verlag: Wiley-Blackwell
- Seitenzahl: 472
- Erscheinungstermin: 9. April 2014
- Englisch
- ISBN-13: 9781118844908
- Artikelnr.: 40781088
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
-
Space 199 3.3.3 Sampling at the Poles 201 3.3.4 Interpolation of Translation Operators 205 3.4 MLFMA for Hermitian Matrix-Vector Multiplications 211 3.5 Strategies for Building Less-Accurate MLFMA 213 3.6 Iterative Solutions of Surface Formulations 215 3.6.1 Hybrid Formulations of PEC Objects 216 3.6.2 Iterative Solutions of Normal Equations 226 3.6.3 Iterative Solutions of Dielectric Objects 238 3.6.4 Iterative Solutions of Composite Objects with Multiple Dielectric and Metallic Regions 247 3.7 MLFMA for Low-Frequency Problems 252 3.7.1 Factorization of the Matrix Elements 256 3.7.2 Low-Frequency MLFMA 259 3.7.3 Broadband MLFMA 261 3.7.4 Numerical Results 261 3.8 Concluding Remarks 268 4 Parallelization of MLFMA for the Solution of Large-Scale Electromagnetics Problems 269 4.1 On the Parallelization of MLFMA 269 4.2 Parallel Computing Platforms for Numerical Examples 270 4.3 Electromagnetics Problems for Numerical Examples 271 4.4 Simple Parallelizations of MLFMA 271 4.4.1 Near-Field Interactions 271 4.4.2 Far-Field Interactions 273 4.5 The Hybrid Parallelization Strategy 274 4.5.1 Aggregation Stage 275 4.5.2 Translation Stage 277 4.5.3 Disaggregation Stage 278 4.5.4 Communications in Hybrid Parallelizations 278 4.5.5 Numerical Results with the Hybrid Parallelization Strategy 279 4.6 The Hierarchical Parallelization Strategy 283 4.6.1 Hierarchical Partitioning of Tree Structures 283 4.6.2 Aggregation Stage 285 4.6.3 Translation Stage 286 4.6.4 Disaggregation Stage 286 4.6.5 Communications in Hierarchical Parallelizations 287 4.6.6 Irregular Partitioning of Tree Structures 288 4.6.7 Comparisons with Previous Parallelization Strategies 289 4.6.8 Numerical Results with the Hierarchical Parallelization Strategy 291 4.7 Efficiency Considerations for Parallel Implementations of MLFMA 295 4.7.1 Efficient Programming 295 4.7.2 System Software 297 4.7.3 Load Balancing 297 4.7.4 Memory Recycling and Optimizations 302 4.7.5 Parallel Environment 306 4.7.6 Parallel Computers 315 4.8 Accuracy Considerations for Parallel Implementations of MLFMA 317 4.8.1 Mesh Quality 324 4.9 Solutions of Large-Scale Electromagnetics Problems Involving PEC Objects 324 4.9.1 PEC Sphere 326 4.9.2 Other Canonical Problems 338 4.9.3 NASA Almond 342 4.9.4 Flamme 354 4.10 Solutions of Large-Scale Electromagnetics Problems Involving Dielectric Objects 358 4.11 Concluding Remarks 368 5 Applications 369 5.1 Case Study: External Resonances of the Flamme 369 5.2 Case Study: Realistic Metamaterials Involving Split-Ring Resonators and Thin Wires 373 5.3 Case Study: Photonic Crystals 377 5.4 Case Study: Scattering from Red Blood Cells 380 5.5 Case Study: Log-Periodic Antennas and Arrays 389 5.5.1 Nonplanar Trapezoidal-Tooth Log-Periodic Antennas 389 5.5.2 Circular Arrays of Log-Periodic Antennas 395 5.5.3 Circular-Sectoral Arrays of Log-Periodic Antennas 403 5.6 Concluding Remarks 410 Appendix 411 A.1 Limit Part of the
Operator 411 A.2 Post Processing 412 A.2.1 Near-Zone Electromagnetic Fields 413 A.2.2 Far-Zone Fields 414 A.3 More Details of the Hierarchical Partitioning Strategy 423 A.3.1 Aggregation/Disaggregation Stages 423 A.3.2 Translation Stage 424 A.4 Mie-Series Solutions 425 A.4.1 Definitions 426 A.4.2 Debye Potentials 426 A.4.3 Electric and Magnetic Fields 427 A.4.4 Incident Fields 427 A.4.5 Perfectly Conducting Sphere 428 A.4.6 Dielectric Sphere 428 A.4.7 Coated Perfectly Conducting Sphere 429 A.4.8 Coated Dielectric Sphere 430 A.4.9 Far-Field Expressions 432 A.5 Electric-Field Volume Integral Equation 433 A.6 Calculation of Some Special Functions 437 A.6.1 Spherical Bessel Functions 437 A.6.2 Legendre Functions 437 A.6.3 Gradient of Multipole-to-Monopole Shift Functions 439 A.6.4 Gaunt Coefficients 439 References 441 Index 453
-
Space 199 3.3.3 Sampling at the Poles 201 3.3.4 Interpolation of Translation Operators 205 3.4 MLFMA for Hermitian Matrix-Vector Multiplications 211 3.5 Strategies for Building Less-Accurate MLFMA 213 3.6 Iterative Solutions of Surface Formulations 215 3.6.1 Hybrid Formulations of PEC Objects 216 3.6.2 Iterative Solutions of Normal Equations 226 3.6.3 Iterative Solutions of Dielectric Objects 238 3.6.4 Iterative Solutions of Composite Objects with Multiple Dielectric and Metallic Regions 247 3.7 MLFMA for Low-Frequency Problems 252 3.7.1 Factorization of the Matrix Elements 256 3.7.2 Low-Frequency MLFMA 259 3.7.3 Broadband MLFMA 261 3.7.4 Numerical Results 261 3.8 Concluding Remarks 268 4 Parallelization of MLFMA for the Solution of Large-Scale Electromagnetics Problems 269 4.1 On the Parallelization of MLFMA 269 4.2 Parallel Computing Platforms for Numerical Examples 270 4.3 Electromagnetics Problems for Numerical Examples 271 4.4 Simple Parallelizations of MLFMA 271 4.4.1 Near-Field Interactions 271 4.4.2 Far-Field Interactions 273 4.5 The Hybrid Parallelization Strategy 274 4.5.1 Aggregation Stage 275 4.5.2 Translation Stage 277 4.5.3 Disaggregation Stage 278 4.5.4 Communications in Hybrid Parallelizations 278 4.5.5 Numerical Results with the Hybrid Parallelization Strategy 279 4.6 The Hierarchical Parallelization Strategy 283 4.6.1 Hierarchical Partitioning of Tree Structures 283 4.6.2 Aggregation Stage 285 4.6.3 Translation Stage 286 4.6.4 Disaggregation Stage 286 4.6.5 Communications in Hierarchical Parallelizations 287 4.6.6 Irregular Partitioning of Tree Structures 288 4.6.7 Comparisons with Previous Parallelization Strategies 289 4.6.8 Numerical Results with the Hierarchical Parallelization Strategy 291 4.7 Efficiency Considerations for Parallel Implementations of MLFMA 295 4.7.1 Efficient Programming 295 4.7.2 System Software 297 4.7.3 Load Balancing 297 4.7.4 Memory Recycling and Optimizations 302 4.7.5 Parallel Environment 306 4.7.6 Parallel Computers 315 4.8 Accuracy Considerations for Parallel Implementations of MLFMA 317 4.8.1 Mesh Quality 324 4.9 Solutions of Large-Scale Electromagnetics Problems Involving PEC Objects 324 4.9.1 PEC Sphere 326 4.9.2 Other Canonical Problems 338 4.9.3 NASA Almond 342 4.9.4 Flamme 354 4.10 Solutions of Large-Scale Electromagnetics Problems Involving Dielectric Objects 358 4.11 Concluding Remarks 368 5 Applications 369 5.1 Case Study: External Resonances of the Flamme 369 5.2 Case Study: Realistic Metamaterials Involving Split-Ring Resonators and Thin Wires 373 5.3 Case Study: Photonic Crystals 377 5.4 Case Study: Scattering from Red Blood Cells 380 5.5 Case Study: Log-Periodic Antennas and Arrays 389 5.5.1 Nonplanar Trapezoidal-Tooth Log-Periodic Antennas 389 5.5.2 Circular Arrays of Log-Periodic Antennas 395 5.5.3 Circular-Sectoral Arrays of Log-Periodic Antennas 403 5.6 Concluding Remarks 410 Appendix 411 A.1 Limit Part of the
Operator 411 A.2 Post Processing 412 A.2.1 Near-Zone Electromagnetic Fields 413 A.2.2 Far-Zone Fields 414 A.3 More Details of the Hierarchical Partitioning Strategy 423 A.3.1 Aggregation/Disaggregation Stages 423 A.3.2 Translation Stage 424 A.4 Mie-Series Solutions 425 A.4.1 Definitions 426 A.4.2 Debye Potentials 426 A.4.3 Electric and Magnetic Fields 427 A.4.4 Incident Fields 427 A.4.5 Perfectly Conducting Sphere 428 A.4.6 Dielectric Sphere 428 A.4.7 Coated Perfectly Conducting Sphere 429 A.4.8 Coated Dielectric Sphere 430 A.4.9 Far-Field Expressions 432 A.5 Electric-Field Volume Integral Equation 433 A.6 Calculation of Some Special Functions 437 A.6.1 Spherical Bessel Functions 437 A.6.2 Legendre Functions 437 A.6.3 Gradient of Multipole-to-Monopole Shift Functions 439 A.6.4 Gaunt Coefficients 439 References 441 Index 453