The New Technology of Financial Crime (eBook, ePUB)
New Crime Commission Technology, New Victims, New Offenders, and New Strategies for Prevention and Control
Redaktion: Rebovich, Donald; Byrne, James M.
Alle Infos zum eBook verschenken
The New Technology of Financial Crime (eBook, ePUB)
New Crime Commission Technology, New Victims, New Offenders, and New Strategies for Prevention and Control
Redaktion: Rebovich, Donald; Byrne, James M.
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Financial crime is a trillion-dollar industry that is likely to continue to grow exponentially unless new strategies of prevention and control can be developed. This book covers a wide range of topics related to financial crime commission, victimization, prevention, and control.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 5.02MB
- The New Technology of Financial Crime (eBook, PDF)42,95 €
- Hedi NasheriEmerging Technologies, Novel Crimes, and Security (eBook, ePUB)39,95 €
- Kenneth OkereaforCybersecurity in the COVID-19 Pandemic (eBook, ePUB)21,95 €
- Digital Piracy (eBook, ePUB)44,95 €
- Ravindra DasThe Zero Trust Framework and Privileged Access Management (PAM) (eBook, ePUB)31,95 €
- Agile Security in the Digital Era (eBook, ePUB)52,95 €
- Advances in Emerging Financial Technology and Digital Money (eBook, ePUB)52,95 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 252
- Erscheinungstermin: 8. August 2022
- Englisch
- ISBN-13: 9781000630923
- Artikelnr.: 63999330
- Verlag: Taylor & Francis
- Seitenzahl: 252
- Erscheinungstermin: 8. August 2022
- Englisch
- ISBN-13: 9781000630923
- Artikelnr.: 63999330
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Cyber-Victimization: Foregrounding the Internal Guardian in Prevention 2.
Phishing Evolves: Analyzing the Enduring Cybercrime 3. Online Fraud
Victimization in China: A Case Study of Baidu Tieba 4. Interrelationship
between Bitcoin, Ransomware, and Terrorist Activities: Criminal Opportunity
Assessment via Cyber-Routine Activities Theoretical Framework 5. The Use of
Military Profiles in Romance Fraud Schemes 6. The Distillation of National
Crime Data into A Plan for Elderly Fraud Prevention: A Quantitative and
Qualitative Analysis of U.S. Postal Inspection Service Cases of Fraud
against the Elderly 7. Organized Crime as Financial Crime: The Nature of
Organized Crime as Reflected in Prosecutions and Research 8. Preventing
Identity Theft: Perspectives on Technological Solutions from Industry
Insiders 9. Forecasting Identity Theft Victims: Analyzing Characteristics
and Preventive Actions through Machine Learning Approaches 10. The
Identification of a Model Victim for Social Engineering: A Qualitative
Analysis
Cyber-Victimization: Foregrounding the Internal Guardian in Prevention 2.
Phishing Evolves: Analyzing the Enduring Cybercrime 3. Online Fraud
Victimization in China: A Case Study of Baidu Tieba 4. Interrelationship
between Bitcoin, Ransomware, and Terrorist Activities: Criminal Opportunity
Assessment via Cyber-Routine Activities Theoretical Framework 5. The Use of
Military Profiles in Romance Fraud Schemes 6. The Distillation of National
Crime Data into A Plan for Elderly Fraud Prevention: A Quantitative and
Qualitative Analysis of U.S. Postal Inspection Service Cases of Fraud
against the Elderly 7. Organized Crime as Financial Crime: The Nature of
Organized Crime as Reflected in Prosecutions and Research 8. Preventing
Identity Theft: Perspectives on Technological Solutions from Industry
Insiders 9. Forecasting Identity Theft Victims: Analyzing Characteristics
and Preventive Actions through Machine Learning Approaches 10. The
Identification of a Model Victim for Social Engineering: A Qualitative
Analysis