137,95 €
137,95 €
inkl. MwSt.
Sofort per Download lieferbar
69 °P sammeln
137,95 €
Als Download kaufen
137,95 €
inkl. MwSt.
Sofort per Download lieferbar
69 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
137,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
69 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Zur Zeit liegt uns keine Inhaltsangabe vor.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 67.4MB
Zur Zeit liegt uns keine Inhaltsangabe vor.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Netherlands
- Seitenzahl: 555
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9789401131544
- Artikelnr.: 44176510
- Verlag: Springer Netherlands
- Seitenzahl: 555
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9789401131544
- Artikelnr.: 44176510
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1. General Concepts of Quantum Mechanics.- 1.1. Formulation of Basic Postulates.- 1.2. Some Corollaries of the Basic Postulates.- 1.3. Time Differentiation of Observables.- 1.4. Quantization.- 1.5. The Uncertainty Relations and Simultaneous Measurability of Physical Quantities.- 1.6. The Free Particle in Three-Dimensional Space.- 1.7. Particles with Spin.- 1.8. Harmonic Oscillator.- 1.9. Identical Particles.- 1.10. Second Quantization.- 2. The One-Dimensional Schrödinger Equation.- 2.1. Self-Adjointness.- 2.2. An Estimate of the Growth of Generalized Eigenfunctions.- 2.3. The Schrödinger Operator with Increasing Potential.- 2.4. On the Asymptotic Behaviour of Solutions of Certain Second-Order Differential Equations as x ??.- 2.5. On Discrete Energy Levels of an Operator with Semi-Bounded Potential.- 2.6. Eigenfunction Expansion for Operators with Decaying Potentials...- 2.7. The Inverse Problem of Scattering Theory.- 2.8. Operator with Periodic Potential.- 3. The Multidimensional Schrödinger Equation.- 3.1. Self-Adjointness.- 3.2. An Estimate of the Generalized Eigenfunctions.- 3.3. Discrete Spectrum and Decay of Eigenfunctions.- 3.4. The Schrödinger Operator with Decaying Potential: Essential Spectrum and Eigenvalues.- 3.5. The Schrödinger Operator with Periodic Potential.- 4. Scattering Theory.- 4.1. The Wave Operators and the Scattering Operator.- 4.2. Existence and Completeness of the Wave Operators.- 4.3. The Lippman-Schwinger Equations and the Asymptotics of Eigen-functions.- 5. Symbols of Operators and Feynman Path Integrals.- 5.1. Symbols of Operators and Quantization: qp-and pq-Symbols and Weyl Symbols.- 5.2. Wick and Anti-Wick Symbols. Covariant and Contravariant Symbols.- 5.3. The General Concept of Feynman Path Integral in Phase Space. Symbols ofthe Evolution Operator.- 5.4. Path Integrals for the Symbol of the Scattering Operator and for the Partition Function.- 5.5. The Connection between Quantum and Classical Mechanics. Semiclassical Asymptotics.- Supplement 1. Spectral Theory of Operators in Hilbert Space.- S1.1. Operators in Hilbert Space. The Spectral Theorem.- S1.2. Generalized Eigenfunctions.- S1.3. Variational Principles and Perturbation Theory for a Discrete Spectrum.- S1.4. Trace Class Operators and the Trace.- S1.5. Tensor Products of Hilbert Spaces.- Supplement 2. Sobolev Spaces and Elliptic Equations.- S2.1. Sobolev Spaces and Embedding Theorems.- S2.2. Regularity of Solutions of Elliptic Equations and a priori Estimates.- S2.3. Singularities of Green's Functions.- Supplement 3. Quantization and Supermanifolds.- S3.1.Supermanifolds:Recapitulations.- S3.2. Quantization: main procedures.- S3.3. Supersymmetry of the Ordinary Schrödinger Equation and of the Electron in the Non-Homogeneous Magnetic Field.- A Short Guide to the Bibliography.
1. General Concepts of Quantum Mechanics.- 1.1. Formulation of Basic Postulates.- 1.2. Some Corollaries of the Basic Postulates.- 1.3. Time Differentiation of Observables.- 1.4. Quantization.- 1.5. The Uncertainty Relations and Simultaneous Measurability of Physical Quantities.- 1.6. The Free Particle in Three-Dimensional Space.- 1.7. Particles with Spin.- 1.8. Harmonic Oscillator.- 1.9. Identical Particles.- 1.10. Second Quantization.- 2. The One-Dimensional Schrödinger Equation.- 2.1. Self-Adjointness.- 2.2. An Estimate of the Growth of Generalized Eigenfunctions.- 2.3. The Schrödinger Operator with Increasing Potential.- 2.4. On the Asymptotic Behaviour of Solutions of Certain Second-Order Differential Equations as x ??.- 2.5. On Discrete Energy Levels of an Operator with Semi-Bounded Potential.- 2.6. Eigenfunction Expansion for Operators with Decaying Potentials...- 2.7. The Inverse Problem of Scattering Theory.- 2.8. Operator with Periodic Potential.- 3. The Multidimensional Schrödinger Equation.- 3.1. Self-Adjointness.- 3.2. An Estimate of the Generalized Eigenfunctions.- 3.3. Discrete Spectrum and Decay of Eigenfunctions.- 3.4. The Schrödinger Operator with Decaying Potential: Essential Spectrum and Eigenvalues.- 3.5. The Schrödinger Operator with Periodic Potential.- 4. Scattering Theory.- 4.1. The Wave Operators and the Scattering Operator.- 4.2. Existence and Completeness of the Wave Operators.- 4.3. The Lippman-Schwinger Equations and the Asymptotics of Eigen-functions.- 5. Symbols of Operators and Feynman Path Integrals.- 5.1. Symbols of Operators and Quantization: qp-and pq-Symbols and Weyl Symbols.- 5.2. Wick and Anti-Wick Symbols. Covariant and Contravariant Symbols.- 5.3. The General Concept of Feynman Path Integral in Phase Space. Symbols ofthe Evolution Operator.- 5.4. Path Integrals for the Symbol of the Scattering Operator and for the Partition Function.- 5.5. The Connection between Quantum and Classical Mechanics. Semiclassical Asymptotics.- Supplement 1. Spectral Theory of Operators in Hilbert Space.- S1.1. Operators in Hilbert Space. The Spectral Theorem.- S1.2. Generalized Eigenfunctions.- S1.3. Variational Principles and Perturbation Theory for a Discrete Spectrum.- S1.4. Trace Class Operators and the Trace.- S1.5. Tensor Products of Hilbert Spaces.- Supplement 2. Sobolev Spaces and Elliptic Equations.- S2.1. Sobolev Spaces and Embedding Theorems.- S2.2. Regularity of Solutions of Elliptic Equations and a priori Estimates.- S2.3. Singularities of Green's Functions.- Supplement 3. Quantization and Supermanifolds.- S3.1.Supermanifolds:Recapitulations.- S3.2. Quantization: main procedures.- S3.3. Supersymmetry of the Ordinary Schrödinger Equation and of the Electron in the Non-Homogeneous Magnetic Field.- A Short Guide to the Bibliography.