This monograph is concerned with the Shimura variety attached to a quaternion algebra over a totally real number field. For any place of good (or moderately bad) reduction, the corresponding (semi-simple) local zeta function is expressed in terms of (semi-simple) local L-functions attached to automorphic representations. In an appendix a conjecture of Langlands and Rapoport on the reduction of a Shimura variety in a very general case is restated in a slightly stronger form. The reader is expected to be familiar with the basic concepts of algebraic geometry, algebraic number theory and the theory of automorphic representation.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.