The Vlasov Equation 1 (eBook, ePUB)
History and General Properties
Alle Infos zum eBook verschenken
The Vlasov Equation 1 (eBook, ePUB)
History and General Properties
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The Vlasov equation is the master equation which provides a statistical description for the collective behavior of large numbers of charged particles in mutual, long-range interaction. In other words, a low collision (or "Vlasov") plasma. Plasma physics is itself a relatively young discipline, whose "birth" can be ascribed to the 1920s. The origin of the Vlasov model, however, is even more recent, dating back to the late 1940s. This "young age" is due to the rare occurrence of Vlasov plasma on Earth, despite the fact it characterizes most of the visible matter in the universe. This book -…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 9.8MB
- Pierre BertrandThe Vlasov Equation 1 (eBook, PDF)139,99 €
- Rashid A. GaneevResonance Enhancement in Laser-Produced Plasmas (eBook, ePUB)148,99 €
- Jörg Florian FriedrichNonthermal Plasmas for Materials Processing (eBook, ePUB)211,99 €
- G. J. PertFoundations of Plasma Physics for Physicists and Mathematicians (eBook, ePUB)98,99 €
- Hartmut ZohmMagnetohydrodynamic Stability of Tokamaks (eBook, ePUB)120,99 €
- Karl-Heinz SpatschekHigh Temperature Plasmas (eBook, ePUB)160,99 €
- John Ernest HarryIntroduction to Plasma Technology (eBook, ePUB)93,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 320
- Erscheinungstermin: 23. September 2019
- Englisch
- ISBN-13: 9781119662846
- Artikelnr.: 58045452
- Verlag: John Wiley & Sons
- Seitenzahl: 320
- Erscheinungstermin: 23. September 2019
- Englisch
- ISBN-13: 9781119662846
- Artikelnr.: 58045452
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
3 52 2.5.3 The fundamental contribution of poles besides Landau 56 2.6 The multiple water bag model 58 2.6.1 A multifluid description 59 2.6.2 Linearized analysis 63 2.7 Further remarks 66 2.8 References 71 Chapter 3 Electromagnetic Fields in Vlasov Plasmas: General Approach to Small Amplitude Perturbations 75 3.1 Introduction and overview of the chapter 75 3.2 Linear analysis of the Vlasov-Maxwell system: general approach 77 3.2.1 Dispersion relation and response matrix 81 3.2.2 The choice of the basis for the response tensor 83 3.2.3 About the number of "waves" in plasmas 89 3.2.4 Real or complex values of k and
: steady state and initial value problems 92 3.3 Polynomial approximations of the dispersion relation: why and how to use them 93 3.3.1 Truncated-Vlasov and fluid-plasma descriptions for the linear analysis 96 3.3.2 Wave dispersion and resonances allowed by inclusion of high-order moments in fluid models 99 3.3.3 An example: fluid moments and Finite-Larmor-Radius effects 103 3.3.4 Key points about approximated normal mode analysis 108 3.4 Vlasov plasmas as collisionless conductors with polarization and finite conductivity: meaning of plasma's "dielectric tensor" 109 3.4.1 Polarization charges and wave equation in dielectric materials 112 3.4.2 The "equivalent" dielectric tensor and its complex components 115 3.4.3 Temporal and spatial dispersion in plasmas 120 3.4.4 Conductivity and collisional resistivity in Vlasov plasmas 122 3.5 Symmetry properties of the complex components of the equivalent dielectric tensor and energy conservation 126 3.5.1 Onsager's relations 126 3.5.2 Poynting's theorem 129 3.5.3 Symmetry of the coefficients of the equivalent dielectric tensor 130 3.5.4 More about Onsager's relations for wave dispersion 134 3.5.5 Energy dissipation versus real and imaginary parts of
ij and
ij 138 3.6 References 141 Chapter 4 Electromagnetic Fields in Vlasov Plasmas: Characterization of Linear Modes 147 4.1 Introduction 147 4.2 Characterization of electromagnetic waves and of wave-packets 148 4.2.1 Polarization of electromagnetic waves in plasmas 153 4.2.2 Phase velocity, group velocity and refractive index 156 4.2.3 Example of propagation in unmagnetized plasmas: underdense and overdense regimes 161 4.2.4 Example of propagation in magnetized plasmas: ion-cyclotron resonances and Faraday's rotation effect 166 4.2.5 Wave-particle resonances, Landau damping and wave absorption 172 4.2.6 Resonance and cut-off conditions on the refractive index 176 4.2.7 Graphical representations of the dispersion relation 178 4.3 Instabilities in Vlasov plasmas: some terminology and general features 182 4.3.1 Linear instabilities 184 4.3.2 Absolute and convective instabilities and some other classification criteria 192 4.4 On some complementary interpretations of the collisionless damping mechanism in Vlasov plasmas 198 4.4.1 Landau damping as an inverse Vavilov-Cherenkov radiation 199 4.4.2 Landau damping in N-body "exact" models 203 4.4.3 Some final remarks about interpretative issues of collisionless damping in Vlasov mean field theory 206 4.5 References 207 Chapter 5 Nonlinear Properties of Electrostatic Vlasov Plasmas 215 5.1 The Vlasov-Poisson system 215 5.2 Invariants of the Vlasov-Poisson model 216 5.3 Stationary solutions: Bernstein-Greene-Kruskal equilibria 217 5.4 Some mathematical properties of the Vlasov equation 220 5.5 The Bernstein-Greene-Kruskal solutions 229 5.5.1 The case of (electrostatic) two-stream instability 230 5.5.2 Chain of BGK equilibria 235 5.5.3 Stability of the periodic BGK steady states 236 5.6 Traveling waves of BGK-type solutions 242 5.7 Role of minority population of trapped particles 245 5.7.1 Nonlinear Landau damping and the emergence of the nonlinear Langmuir-type wave 247 5.7.2 Electron acoustic wave in the nonlinear Landau damping regime 254 5.7.3 Kinetic electrostatic electron nonlinear waves 260 5.7.4 Emergent resonance for KEEN waves 268 5.8 Nature of KEEN waves and NMI 270 5.8.1 Adiabatic model for a single linear wave: the (electrostatic) trapped electron mode model 270 5.8.2 The Dodin and Fisch model connected to the emergence of KEEN waves 274 5.9 Electron hole and plasma wave interaction 281 5.10 References 291 Index 297
3 52 2.5.3 The fundamental contribution of poles besides Landau 56 2.6 The multiple water bag model 58 2.6.1 A multifluid description 59 2.6.2 Linearized analysis 63 2.7 Further remarks 66 2.8 References 71 Chapter 3 Electromagnetic Fields in Vlasov Plasmas: General Approach to Small Amplitude Perturbations 75 3.1 Introduction and overview of the chapter 75 3.2 Linear analysis of the Vlasov-Maxwell system: general approach 77 3.2.1 Dispersion relation and response matrix 81 3.2.2 The choice of the basis for the response tensor 83 3.2.3 About the number of "waves" in plasmas 89 3.2.4 Real or complex values of k and
: steady state and initial value problems 92 3.3 Polynomial approximations of the dispersion relation: why and how to use them 93 3.3.1 Truncated-Vlasov and fluid-plasma descriptions for the linear analysis 96 3.3.2 Wave dispersion and resonances allowed by inclusion of high-order moments in fluid models 99 3.3.3 An example: fluid moments and Finite-Larmor-Radius effects 103 3.3.4 Key points about approximated normal mode analysis 108 3.4 Vlasov plasmas as collisionless conductors with polarization and finite conductivity: meaning of plasma's "dielectric tensor" 109 3.4.1 Polarization charges and wave equation in dielectric materials 112 3.4.2 The "equivalent" dielectric tensor and its complex components 115 3.4.3 Temporal and spatial dispersion in plasmas 120 3.4.4 Conductivity and collisional resistivity in Vlasov plasmas 122 3.5 Symmetry properties of the complex components of the equivalent dielectric tensor and energy conservation 126 3.5.1 Onsager's relations 126 3.5.2 Poynting's theorem 129 3.5.3 Symmetry of the coefficients of the equivalent dielectric tensor 130 3.5.4 More about Onsager's relations for wave dispersion 134 3.5.5 Energy dissipation versus real and imaginary parts of
ij and
ij 138 3.6 References 141 Chapter 4 Electromagnetic Fields in Vlasov Plasmas: Characterization of Linear Modes 147 4.1 Introduction 147 4.2 Characterization of electromagnetic waves and of wave-packets 148 4.2.1 Polarization of electromagnetic waves in plasmas 153 4.2.2 Phase velocity, group velocity and refractive index 156 4.2.3 Example of propagation in unmagnetized plasmas: underdense and overdense regimes 161 4.2.4 Example of propagation in magnetized plasmas: ion-cyclotron resonances and Faraday's rotation effect 166 4.2.5 Wave-particle resonances, Landau damping and wave absorption 172 4.2.6 Resonance and cut-off conditions on the refractive index 176 4.2.7 Graphical representations of the dispersion relation 178 4.3 Instabilities in Vlasov plasmas: some terminology and general features 182 4.3.1 Linear instabilities 184 4.3.2 Absolute and convective instabilities and some other classification criteria 192 4.4 On some complementary interpretations of the collisionless damping mechanism in Vlasov plasmas 198 4.4.1 Landau damping as an inverse Vavilov-Cherenkov radiation 199 4.4.2 Landau damping in N-body "exact" models 203 4.4.3 Some final remarks about interpretative issues of collisionless damping in Vlasov mean field theory 206 4.5 References 207 Chapter 5 Nonlinear Properties of Electrostatic Vlasov Plasmas 215 5.1 The Vlasov-Poisson system 215 5.2 Invariants of the Vlasov-Poisson model 216 5.3 Stationary solutions: Bernstein-Greene-Kruskal equilibria 217 5.4 Some mathematical properties of the Vlasov equation 220 5.5 The Bernstein-Greene-Kruskal solutions 229 5.5.1 The case of (electrostatic) two-stream instability 230 5.5.2 Chain of BGK equilibria 235 5.5.3 Stability of the periodic BGK steady states 236 5.6 Traveling waves of BGK-type solutions 242 5.7 Role of minority population of trapped particles 245 5.7.1 Nonlinear Landau damping and the emergence of the nonlinear Langmuir-type wave 247 5.7.2 Electron acoustic wave in the nonlinear Landau damping regime 254 5.7.3 Kinetic electrostatic electron nonlinear waves 260 5.7.4 Emergent resonance for KEEN waves 268 5.8 Nature of KEEN waves and NMI 270 5.8.1 Adiabatic model for a single linear wave: the (electrostatic) trapped electron mode model 270 5.8.2 The Dodin and Fisch model connected to the emergence of KEEN waves 274 5.9 Electron hole and plasma wave interaction 281 5.10 References 291 Index 297