Theoretical and Computational Aerodynamics (eBook, PDF)
Alle Infos zum eBook verschenken
Theoretical and Computational Aerodynamics (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Aerodynamics has seen many developments due to the growth of scientific computing, which has caused the design cycle time of aerospace vehicles to be heavily reduced. Today computational aerodynamics appears in the preliminary step of a new design, relegating costly, time-consuming wind tunnel testing to the final stages of design. Theoretical and Computational Aerodynamics is aimed to be a comprehensive textbook, covering classical aerodynamic theories and recent applications made possible by computational aerodynamics. It starts with a discussion on lift and drag from an overall dynamical…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 20.6MB
- Tapan K. SenguptaTheoretical and Computational Aerodynamics (eBook, ePUB)68,99 €
- Alan MorrisA Practical Guide to Reliable Finite Element Modelling (eBook, PDF)121,99 €
- Ea De Souza NetoComputational Methods for Plasticity (eBook, PDF)146,99 €
- Ted BelytschkoNonlinear Finite Elements for Continua and Structures (eBook, PDF)81,99 €
- Alexander ForresterEngineering Design via Surrogate Modelling (eBook, PDF)106,99 €
- Joe EisleyAnalysis of Structures (eBook, PDF)86,99 €
- Lukasz BrenkaczBearing Dynamic Coefficients in Rotordynamics (eBook, PDF)120,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 516
- Erscheinungstermin: 6. Oktober 2014
- Englisch
- ISBN-13: 9781118787540
- Artikelnr.: 41739431
- Verlag: John Wiley & Sons
- Seitenzahl: 516
- Erscheinungstermin: 6. Oktober 2014
- Englisch
- ISBN-13: 9781118787540
- Artikelnr.: 41739431
) 157 4.13.2 Yawing Moment (N) 159 4.13.3 Effect of Aspect Ratio on Lift Curve Slope 159 4.14 Simplified Horse Shoe Vortex 161 4.15 Applications of Simplified Horse Shoe Vortex System 162 4.15.1 Influence of Downwash on Tailplane 162 4.15.2 Formation-flight of Birds 163 4.15.3 Wing-in-Ground Effect 165 4.16 Prandtl's Lifting Line Equation or the Monoplane Equation 167 Bibliography 169 5 Panel Methods 171 5.1 Introduction 171 5.2 Line Source Distribution 172 5.2.1 Perturbation Velocity Components due to Source Distribution 174 5.3 Panel Method due to Hess and Smith 176 5.3.1 Calculation of Influence Coefficients 180 5.4 Some Typical Results 183 Bibliography 188 6 Lifting Surface, Slender Wing and Low Aspect Ratio Wing Theories 189 6.1 Introduction 189 6.2 Green's Theorems and Their Applications to Potential Flows 190 6.2.1 Reciprocal Theorem 192 6.3 Irrotational External Flow Field due to a Lifting Surface 192 6.3.1 Large Aspect Ratio Wings 197 6.3.2 Wings of Small Aspect Ratio 199 6.4 Slender Wing Theory 201 6.5 Spanwise Loading 205 6.6 Lift on Delta or Triangular Wing 206 6.6.1 Low Aspect Ratio Wing Aerodynamics and Vortex Lift 207 6.7 Vortex Breakdown 214 6.7.1 Types of Vortex Breakdown 216 6.8 Slender Body Theory 218 Bibliography 221 7 Boundary Layer Theory 223 7.1 Introduction 223 7.2 Regular and Singular Perturbation Problems in Fluid Flows 224 7.3 Boundary Layer Equations 225 7.3.1 Conservation of Mass 226 7.3.2 The
-Momentum Equation 226 7.3.3 The
-Momentum Equation 227 7.3.4 Use of Boundary Layer Equations 229 7.4 Boundary Layer Thicknesses 230 7.4.1 Boundary Layer Displacement Thickness 231 7.4.2 Boundary Layer Momentum Thickness 232 7.5 Momentum Integral Equation 233 7.6 Validity of Boundary Layer Equation and Separation 235 7.7 Solution of Boundary Layer Equation 237 7.8 Similarity Analysis 238 7.8.1 Zero Pressure Gradient Boundary Layer or Blasius Profile 243 7.8.2 Stagnation Point or the Hiemenz Flow 244 7.8.3 Flat Plate Wake at Zero Angle of Attack 245 7.8.4 Two-dimensional Laminar Jet 247 7.8.5 Laminar Mixing Layer 250 7.9 Use of Boundary Layer Equation in Aerodynamics 252 7.9.1 Differential Formulation of Boundary Layer Equation 253 7.9.2 Use of Momentum Integral Equation 254 7.9.3 Pohlhausen's Method 254 7.9.4 Thwaite's Method 257 Bibliography 258 8 Computational Aerodynamics 259 8.1 Introduction 259 8.2 A Model Dynamical Equation 260 8.3 Space--Time Resolution of Flows 263 8.3.1 Spatial Scales in Turbulent Flows and Direct Numerical Simulation 264 8.3.2 Computing Unsteady Flows: Dispersion Relation Preserving (DRP) Methods 265 8.3.3 Spectral or Numerical Amplification Factor 266 8.4 An Improved Orthogonal Grid Generation Method for Aerofoil 275 8.5 Orthogonal Grid Generation 279 8.5.1 Grid Generation Algorithm 281 8.6 Orthogonal Grid Generation for an Aerofoil with Roughness Elements 284 8.7 Solution of Navier--Stokes Equation for Flow Past AG24 Aerofoil 287 8.7.1 Grid Smoothness vs Deviation from Orthogonality 290 Bibliography 291 9 Instability and Transition in Aerodynamics 295 9.1 Introduction 295 9.2 Temporal and Spatial Instability 298 9.3 Parallel Flow Approximation and Inviscid Instability Theorems 299 9.3.1 Inviscid Instability Mechanism 300 9.4 Viscous Instability of Parallel Flows 301 9.4.1 Temporal and Spatial Amplification of Disturbances 303 9.5 Instability Analysis from the Solution of the Orr--Sommerfeld Equation 304 9.5.1 Local and Total Amplification of Disturbances 306 9.5.2 Effects of the Mean Flow Pressure Gradient 308 9.5.3 Transition Prediction Based on Stability Calculation:
Method 312 9.5.4 Effects of FST 314 9.5.5 Distinction between Controlled and Uncontrolled Excitations 315 9.6 Transition in Three-Dimensional Flows 318 9.7 Infinite Swept Wing Flow 320 9.8 Attachment Line Flow 321 9.9 Boundary Layer Equations in the Transformed Plane 322 9.10 Simplification of Boundary Layer Equations in the Transformed Plane 324 9.11 Instability of Three-Dimensional Flows 325 9.11.1 Effects of Sweep-back and Cross Flow Instability 326 9.12 Linear Viscous Stability Theory for Three-Dimensional Flows 328 9.12.1 Temporal Instability of Three-dimensional Flows 329 9.12.2 Spatial Instability of Three-dimensional Flows 330 9.13 Experimental Evidence of Instability on Swept Wings 332 9.14 Infinite Swept Wing Boundary Layer 334 9.15 Stability of the Falkner--Skan--Cooke Profile 337 9.16 Stationary Waves over Swept Geometries 340 9.17 Empirical Transition Prediction Method for Three-Dimensional Flows 340 9.17.1 Streamwise Transition Criterion 341 9.17.2 Cross Flow Transition Criteria 341 9.17.3 Leading Edge Contamination Criterion 343 Bibliography 343 10 Drag Reduction: Analysis and Design of Airfoils 347 10.1 Introduction 347 10.2 Laminar Flow Airfoils 350 10.2.1 The Drag Bucket of Six-Digit Series Aerofoils 352 10.2.2 Profiling Modern Laminar Flow Aerofoils 353 10.3 Pressure Recovery of Some Low Drag Airfoils 358 10.4 Flap Operation of Airfoils for NLF 361 10.5 Effects of Roughness and Fixing Transition 362 10.6 Effects of Vortex Generator or Boundary Layer Re-Energizer 364 10.7 Section Characteristics of Various Profiles 364 10.8 A High Speed NLF Aerofoil 365 10.9 Direct Simulation of Bypass Transitional Flow Past an Airfoil 369 10.9.1 Governing Equations and Formulation 370 10.9.2 Results and Discussion 371 Bibliography 378 11 Direct Numerical Simulation of 2D Transonic Flows around Airfoils 381 11.1 Introduction 381 11.2 Governing Equations and Boundary Conditions 382 11.3 Numerical Procedure 384 11.4 Some Typical Results 387 11.4.1 Validation of Methodologies for Compressible Flow Calculations and Shock Capturing 387 11.4.2 Computing Strong Shock Cases 396 11.4.3 Unsteadiness of Compressible Flows 396 11.4.4 Creation of Rotational Effects 396 11.4.5 Strong Shock and Entropy Gradient 401 11.4.6 Lift and Drag Calculation 404 Bibliography 406 12 Low Reynolds Number Aerodynamics 409 12.1 Introduction 409 12.2 Micro-air Vehicle Aerodynamics 412 12.3 Governing Equations in Inertial and Noninertial Frames 413 12.3.1 Pressure Solver 415 12.3.2 Proof of Equation (12.17) 416 12.3.3 Distinction between Low and High Reynolds Number Flows 418 12.3.4 Validation Studies of Computations 420 12.4 Flow Past an AG24 Airfoil at Low Reynolds Numbers 425 Bibliography 442 13 High Lift Devices and Flow Control 445 13.1 Introduction 445 13.1.1 High Lift Configuration 446 13.2 Passive Devices: Multi-Element Airfoils with Slats and Flaps 449 13.2.1 Optimization of Flap Placement and Settings 450 13.2.2 Aerodynamic Data of GA(W)-1 Airfoil Fitted with Fowler Flap 453 13.2.3 Physical Explanation of Multi-element Aerofoil Operation 455 13.2.4 Vortex Generator 457 13.2.5 Induced Drag and Its Alleviation 461 13.2.6 Theoretical Analysis of Induced Drag 463 13.2.7 Fuselage Drag Reduction 464 13.2.8 Instability of Flow over Nacelle 465 13.3 Flow Control by Plasma Actuation: High Lift Device and Drag Reduction 465 13.3.1 Control of Bypass Transitional Flow Past an Aerofoil by Plasma Actuation 466 13.4 Governing Equations for Plasma 468 13.4.1 Suzen et al.'s Model 470 13.4.2 Orlov's Model 471 13.4.3 Spatio-temporal Lumped-element Circuit Model 472 13.4.4 Algorithm for Calculating Body Force 474 13.4.5 Lemire and Vo's Model 474 13.5 Governing Fluid Dynamic Equations 475 13.6 Results and Discussions 476 Bibliography 484 Index 487
) 157 4.13.2 Yawing Moment (N) 159 4.13.3 Effect of Aspect Ratio on Lift Curve Slope 159 4.14 Simplified Horse Shoe Vortex 161 4.15 Applications of Simplified Horse Shoe Vortex System 162 4.15.1 Influence of Downwash on Tailplane 162 4.15.2 Formation-flight of Birds 163 4.15.3 Wing-in-Ground Effect 165 4.16 Prandtl's Lifting Line Equation or the Monoplane Equation 167 Bibliography 169 5 Panel Methods 171 5.1 Introduction 171 5.2 Line Source Distribution 172 5.2.1 Perturbation Velocity Components due to Source Distribution 174 5.3 Panel Method due to Hess and Smith 176 5.3.1 Calculation of Influence Coefficients 180 5.4 Some Typical Results 183 Bibliography 188 6 Lifting Surface, Slender Wing and Low Aspect Ratio Wing Theories 189 6.1 Introduction 189 6.2 Green's Theorems and Their Applications to Potential Flows 190 6.2.1 Reciprocal Theorem 192 6.3 Irrotational External Flow Field due to a Lifting Surface 192 6.3.1 Large Aspect Ratio Wings 197 6.3.2 Wings of Small Aspect Ratio 199 6.4 Slender Wing Theory 201 6.5 Spanwise Loading 205 6.6 Lift on Delta or Triangular Wing 206 6.6.1 Low Aspect Ratio Wing Aerodynamics and Vortex Lift 207 6.7 Vortex Breakdown 214 6.7.1 Types of Vortex Breakdown 216 6.8 Slender Body Theory 218 Bibliography 221 7 Boundary Layer Theory 223 7.1 Introduction 223 7.2 Regular and Singular Perturbation Problems in Fluid Flows 224 7.3 Boundary Layer Equations 225 7.3.1 Conservation of Mass 226 7.3.2 The
-Momentum Equation 226 7.3.3 The
-Momentum Equation 227 7.3.4 Use of Boundary Layer Equations 229 7.4 Boundary Layer Thicknesses 230 7.4.1 Boundary Layer Displacement Thickness 231 7.4.2 Boundary Layer Momentum Thickness 232 7.5 Momentum Integral Equation 233 7.6 Validity of Boundary Layer Equation and Separation 235 7.7 Solution of Boundary Layer Equation 237 7.8 Similarity Analysis 238 7.8.1 Zero Pressure Gradient Boundary Layer or Blasius Profile 243 7.8.2 Stagnation Point or the Hiemenz Flow 244 7.8.3 Flat Plate Wake at Zero Angle of Attack 245 7.8.4 Two-dimensional Laminar Jet 247 7.8.5 Laminar Mixing Layer 250 7.9 Use of Boundary Layer Equation in Aerodynamics 252 7.9.1 Differential Formulation of Boundary Layer Equation 253 7.9.2 Use of Momentum Integral Equation 254 7.9.3 Pohlhausen's Method 254 7.9.4 Thwaite's Method 257 Bibliography 258 8 Computational Aerodynamics 259 8.1 Introduction 259 8.2 A Model Dynamical Equation 260 8.3 Space--Time Resolution of Flows 263 8.3.1 Spatial Scales in Turbulent Flows and Direct Numerical Simulation 264 8.3.2 Computing Unsteady Flows: Dispersion Relation Preserving (DRP) Methods 265 8.3.3 Spectral or Numerical Amplification Factor 266 8.4 An Improved Orthogonal Grid Generation Method for Aerofoil 275 8.5 Orthogonal Grid Generation 279 8.5.1 Grid Generation Algorithm 281 8.6 Orthogonal Grid Generation for an Aerofoil with Roughness Elements 284 8.7 Solution of Navier--Stokes Equation for Flow Past AG24 Aerofoil 287 8.7.1 Grid Smoothness vs Deviation from Orthogonality 290 Bibliography 291 9 Instability and Transition in Aerodynamics 295 9.1 Introduction 295 9.2 Temporal and Spatial Instability 298 9.3 Parallel Flow Approximation and Inviscid Instability Theorems 299 9.3.1 Inviscid Instability Mechanism 300 9.4 Viscous Instability of Parallel Flows 301 9.4.1 Temporal and Spatial Amplification of Disturbances 303 9.5 Instability Analysis from the Solution of the Orr--Sommerfeld Equation 304 9.5.1 Local and Total Amplification of Disturbances 306 9.5.2 Effects of the Mean Flow Pressure Gradient 308 9.5.3 Transition Prediction Based on Stability Calculation:
Method 312 9.5.4 Effects of FST 314 9.5.5 Distinction between Controlled and Uncontrolled Excitations 315 9.6 Transition in Three-Dimensional Flows 318 9.7 Infinite Swept Wing Flow 320 9.8 Attachment Line Flow 321 9.9 Boundary Layer Equations in the Transformed Plane 322 9.10 Simplification of Boundary Layer Equations in the Transformed Plane 324 9.11 Instability of Three-Dimensional Flows 325 9.11.1 Effects of Sweep-back and Cross Flow Instability 326 9.12 Linear Viscous Stability Theory for Three-Dimensional Flows 328 9.12.1 Temporal Instability of Three-dimensional Flows 329 9.12.2 Spatial Instability of Three-dimensional Flows 330 9.13 Experimental Evidence of Instability on Swept Wings 332 9.14 Infinite Swept Wing Boundary Layer 334 9.15 Stability of the Falkner--Skan--Cooke Profile 337 9.16 Stationary Waves over Swept Geometries 340 9.17 Empirical Transition Prediction Method for Three-Dimensional Flows 340 9.17.1 Streamwise Transition Criterion 341 9.17.2 Cross Flow Transition Criteria 341 9.17.3 Leading Edge Contamination Criterion 343 Bibliography 343 10 Drag Reduction: Analysis and Design of Airfoils 347 10.1 Introduction 347 10.2 Laminar Flow Airfoils 350 10.2.1 The Drag Bucket of Six-Digit Series Aerofoils 352 10.2.2 Profiling Modern Laminar Flow Aerofoils 353 10.3 Pressure Recovery of Some Low Drag Airfoils 358 10.4 Flap Operation of Airfoils for NLF 361 10.5 Effects of Roughness and Fixing Transition 362 10.6 Effects of Vortex Generator or Boundary Layer Re-Energizer 364 10.7 Section Characteristics of Various Profiles 364 10.8 A High Speed NLF Aerofoil 365 10.9 Direct Simulation of Bypass Transitional Flow Past an Airfoil 369 10.9.1 Governing Equations and Formulation 370 10.9.2 Results and Discussion 371 Bibliography 378 11 Direct Numerical Simulation of 2D Transonic Flows around Airfoils 381 11.1 Introduction 381 11.2 Governing Equations and Boundary Conditions 382 11.3 Numerical Procedure 384 11.4 Some Typical Results 387 11.4.1 Validation of Methodologies for Compressible Flow Calculations and Shock Capturing 387 11.4.2 Computing Strong Shock Cases 396 11.4.3 Unsteadiness of Compressible Flows 396 11.4.4 Creation of Rotational Effects 396 11.4.5 Strong Shock and Entropy Gradient 401 11.4.6 Lift and Drag Calculation 404 Bibliography 406 12 Low Reynolds Number Aerodynamics 409 12.1 Introduction 409 12.2 Micro-air Vehicle Aerodynamics 412 12.3 Governing Equations in Inertial and Noninertial Frames 413 12.3.1 Pressure Solver 415 12.3.2 Proof of Equation (12.17) 416 12.3.3 Distinction between Low and High Reynolds Number Flows 418 12.3.4 Validation Studies of Computations 420 12.4 Flow Past an AG24 Airfoil at Low Reynolds Numbers 425 Bibliography 442 13 High Lift Devices and Flow Control 445 13.1 Introduction 445 13.1.1 High Lift Configuration 446 13.2 Passive Devices: Multi-Element Airfoils with Slats and Flaps 449 13.2.1 Optimization of Flap Placement and Settings 450 13.2.2 Aerodynamic Data of GA(W)-1 Airfoil Fitted with Fowler Flap 453 13.2.3 Physical Explanation of Multi-element Aerofoil Operation 455 13.2.4 Vortex Generator 457 13.2.5 Induced Drag and Its Alleviation 461 13.2.6 Theoretical Analysis of Induced Drag 463 13.2.7 Fuselage Drag Reduction 464 13.2.8 Instability of Flow over Nacelle 465 13.3 Flow Control by Plasma Actuation: High Lift Device and Drag Reduction 465 13.3.1 Control of Bypass Transitional Flow Past an Aerofoil by Plasma Actuation 466 13.4 Governing Equations for Plasma 468 13.4.1 Suzen et al.'s Model 470 13.4.2 Orlov's Model 471 13.4.3 Spatio-temporal Lumped-element Circuit Model 472 13.4.4 Algorithm for Calculating Body Force 474 13.4.5 Lemire and Vo's Model 474 13.5 Governing Fluid Dynamic Equations 475 13.6 Results and Discussions 476 Bibliography 484 Index 487