Wolfram Brauer
Theoretische Grundlagen der Halbleiterphysik (eBook, PDF)
-22%11
42,99 €
54,99 €**
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
21 °P sammeln
-22%11
42,99 €
54,99 €**
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
21 °P sammeln
Als Download kaufen
54,99 €****
-22%11
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
21 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
54,99 €****
-22%11
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
21 °P sammeln
Wolfram Brauer
Theoretische Grundlagen der Halbleiterphysik (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 6.71MB
Andere Kunden interessierten sich auch für
- -36%11Gordon M. BarrowPhysikalische Prinzipien und ihre Anwendung in der Chemie (eBook, PDF)38,66 €
- -30%11Horst LangemannKinetik der Ein- und Mehrphasenreaktoren, speziell der Blasensäulenreaktoren (eBook, PDF)38,66 €
- -22%11Waldemar JawtuschUntersuchungen über die Stoßvorgänge zwischen neutralen Atomen und Molekülen (eBook, PDF)42,99 €
- -22%11Herbert WeißPhysik und Anwendung galvanomagnetischer Bauelemente (eBook, PDF)42,99 €
- Walter FranzTheorie der Elektronenbeweglichkeit in Halbleitern (eBook, PDF)39,99 €
- -22%11Hugo SchmaleUntersuchungen über den Grad der subjektiv gegebenen Beanspruchung bei körperlicher Arbeit (eBook, PDF)42,99 €
- -22%11Arnold FrohnTheoretische und experimentelle Untersuchung der physiko-chemischen Reaktionsprozesse unter Berücksichtigung der Vibrationsrelaxation in Gemischen aus CO2-O2-N2 im Stoßwellenrohr (eBook, PDF)42,99 €
- -22%11
- -22%11
- -22%11
Produktdetails
- Verlag: Vieweg+Teubner Verlag
- Seitenzahl: 220
- Erscheinungstermin: 13. März 2013
- Deutsch
- ISBN-13: 9783322863256
- Artikelnr.: 53099001
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1. Kristallstruktur und Symmetrien.- 1.1. Translationsgruppe.- 1.2. Punktgruppe.- 1.3. Fraktionelle Translationen.- 1.4. Beispiel: fcc-Gitter.- 2. Elektron im idealen Kristallpotential.- 2.1. Kristallpotential.- 2.2. Symmetrieoperatoren.- 2.3. Eigenwertproblem der Translationsoperatoren.- 2.4. Blochsches Theorem.- 2.5. Energiebänder.- 2.6. Periodische Randbedingung.- 2.7. Zustandsdichte. Kritische Punkte.- 2.8. Impulsmessung. Erwartungswert des Impulses. f-Summensatz.- 2.9. Halbleiter-Bandstrukturen.- 3. Methoden zur Berechnung der Bandstruktur.- 3.1. Qualitative Form des Kristallpotentials.- 3.2. Eigenwertproblem und Entwicklungsfunktionen.- 3.3. Entwicklung nach Bloch-Summen.- 3.4. Bindungs-Orbital-Modell.- 3.5. Entwicklung nach ebenen Wellen.- 3.6. Orthogonalisierte ebene Wellen.- 3.7. Pseudopotential.- 3.8. ? · p-Methode.- 3.9. Hartree-Fock-Slater-Kristallpotential.- 4. Störstellen.- 4.1. Charakterisierung von Störstellen.- 4.2. Effektivmassennäherung.- 4.3. Energieniveaus von Substitutionsstörstellen.- 5. Statistik der Ladungsträger im Gleichgewicht.- 5.1. Ladungsträgerdichte in den Bändern.- 5.2. Ladungsträgerdichte in den Störstellen.- 5.3. Bestimmung des chemischen Potentials.- 6. Bornsche Gitterdynamik.- 6.1. Schwingungszweige. Phononen.- 6.2. Phononen kleiner w-Vektoren.- 7. Lineare Wechselwirkung der Elektronen mit einem äußeren elektromagnetischen Feld.- 7.1. Mikroskopischer Quasileitfähigkeitstensor.- 7.2. Weitere mikroskopische Responsefunktionen.- 7.3. Näherung des selbstkonsistenten Feldes.- 8. Elektronische optische Eigenschaften.- 8.1. Dielektrischer Tensor.- 8.2. Mikroskopische Theorie des dielektrischen Tensors..- 8.3. Interbandübergänge.- 8.4. Plasmabereich.- 8.5. Exzitonen.- 9. Kristallpotential im Bindungsladungsmodell.Modellpotential.- 9.1. Nichtlineare Abschirmung des Ionenpotentials.- 9.2. Bindungsladungsmodell.- 9.3. Modellpotential.- 10. Mikroskopische Theorie der Gitterdynamik.- 10.1. Bewegungsgleichung der Ionen.- 10.2. Dynamische Matrix.- 10.3. Effektiver Ladungstensor.- 10.4. Polaritonen in Kristallen mit Zinkblendestruktur.- 10.5. Gitteranteil der dielektrischen Funktion.- 11. Elektron-Phonon-Wechselwirkung.- 11.1. Wechselwirkungsoperator.- 11.2. Deformationspotential.- 11.3. Elektron-Phonon-Streuung.- 12. Boltzmann-Gleichung.- 13. Lösungen der Boltzmann-Gleichung.- 13.1. Relaxationszeit.- 13.2. Ellipsoidische Energieflächen.- 13.3. Kohlersches Variationsverfahren.- 14. Elektrische Leitfähigkeit.- 14.1. Streuung an ionisierten Störstellen.- 14.2. Deformationspotential-Streuung.- 14.3. Polare Streuung.- 14.4. Drudeformel. Leitfähigkeit bei tiefen Frequenzen.- 15. Galvanomagnetische Effekte.- 15.1. Jones-Zener-Lösung.- 15.2. Hall-Effekt.- 15.3. Magnetowiderstand.- Appendix 1.- Appendix 2.- Appendix 3.- Appendix 4.- Appendix 5.- Appendix 6.- Appendix 7.- Appendix 8.- Appendix 9.- Appendix 10.- Literatur.- Verzeichnis der wichtigsten Symbole.
1. Kristallstruktur und Symmetrien.- 1.1. Translationsgruppe.- 1.2. Punktgruppe.- 1.3. Fraktionelle Translationen.- 1.4. Beispiel: fcc-Gitter.- 2. Elektron im idealen Kristallpotential.- 2.1. Kristallpotential.- 2.2. Symmetrieoperatoren.- 2.3. Eigenwertproblem der Translationsoperatoren.- 2.4. Blochsches Theorem.- 2.5. Energiebänder.- 2.6. Periodische Randbedingung.- 2.7. Zustandsdichte. Kritische Punkte.- 2.8. Impulsmessung. Erwartungswert des Impulses. f-Summensatz.- 2.9. Halbleiter-Bandstrukturen.- 3. Methoden zur Berechnung der Bandstruktur.- 3.1. Qualitative Form des Kristallpotentials.- 3.2. Eigenwertproblem und Entwicklungsfunktionen.- 3.3. Entwicklung nach Bloch-Summen.- 3.4. Bindungs-Orbital-Modell.- 3.5. Entwicklung nach ebenen Wellen.- 3.6. Orthogonalisierte ebene Wellen.- 3.7. Pseudopotential.- 3.8. ? · p-Methode.- 3.9. Hartree-Fock-Slater-Kristallpotential.- 4. Störstellen.- 4.1. Charakterisierung von Störstellen.- 4.2. Effektivmassennäherung.- 4.3. Energieniveaus von Substitutionsstörstellen.- 5. Statistik der Ladungsträger im Gleichgewicht.- 5.1. Ladungsträgerdichte in den Bändern.- 5.2. Ladungsträgerdichte in den Störstellen.- 5.3. Bestimmung des chemischen Potentials.- 6. Bornsche Gitterdynamik.- 6.1. Schwingungszweige. Phononen.- 6.2. Phononen kleiner w-Vektoren.- 7. Lineare Wechselwirkung der Elektronen mit einem äußeren elektromagnetischen Feld.- 7.1. Mikroskopischer Quasileitfähigkeitstensor.- 7.2. Weitere mikroskopische Responsefunktionen.- 7.3. Näherung des selbstkonsistenten Feldes.- 8. Elektronische optische Eigenschaften.- 8.1. Dielektrischer Tensor.- 8.2. Mikroskopische Theorie des dielektrischen Tensors..- 8.3. Interbandübergänge.- 8.4. Plasmabereich.- 8.5. Exzitonen.- 9. Kristallpotential im Bindungsladungsmodell.Modellpotential.- 9.1. Nichtlineare Abschirmung des Ionenpotentials.- 9.2. Bindungsladungsmodell.- 9.3. Modellpotential.- 10. Mikroskopische Theorie der Gitterdynamik.- 10.1. Bewegungsgleichung der Ionen.- 10.2. Dynamische Matrix.- 10.3. Effektiver Ladungstensor.- 10.4. Polaritonen in Kristallen mit Zinkblendestruktur.- 10.5. Gitteranteil der dielektrischen Funktion.- 11. Elektron-Phonon-Wechselwirkung.- 11.1. Wechselwirkungsoperator.- 11.2. Deformationspotential.- 11.3. Elektron-Phonon-Streuung.- 12. Boltzmann-Gleichung.- 13. Lösungen der Boltzmann-Gleichung.- 13.1. Relaxationszeit.- 13.2. Ellipsoidische Energieflächen.- 13.3. Kohlersches Variationsverfahren.- 14. Elektrische Leitfähigkeit.- 14.1. Streuung an ionisierten Störstellen.- 14.2. Deformationspotential-Streuung.- 14.3. Polare Streuung.- 14.4. Drudeformel. Leitfähigkeit bei tiefen Frequenzen.- 15. Galvanomagnetische Effekte.- 15.1. Jones-Zener-Lösung.- 15.2. Hall-Effekt.- 15.3. Magnetowiderstand.- Appendix 1.- Appendix 2.- Appendix 3.- Appendix 4.- Appendix 5.- Appendix 6.- Appendix 7.- Appendix 8.- Appendix 9.- Appendix 10.- Literatur.- Verzeichnis der wichtigsten Symbole.