Wolfgang Schäfer
Theoretische Grundlagen der Stabilität technischer Systeme (eBook, PDF)
Direkte Methode
-22%11
42,99 €
54,99 €**
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
21 °P sammeln
-22%11
42,99 €
54,99 €**
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
21 °P sammeln
Als Download kaufen
54,99 €****
-22%11
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
21 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
54,99 €****
-22%11
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
21 °P sammeln
Wolfgang Schäfer
Theoretische Grundlagen der Stabilität technischer Systeme (eBook, PDF)
Direkte Methode
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 6.54MB
Produktdetails
- Verlag: Vieweg+Teubner Verlag
- Seitenzahl: 130
- Erscheinungstermin: 13. März 2013
- Deutsch
- ISBN-13: 9783322863270
- Artikelnr.: 53152850
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1. Grundlegende Begriffe.- 1.1. Der Bewegungsraum.- 1.2. Funktionen.- 1.3. Matrizen.- 1.4. Metrische Räume.- 1.5. Bewegungen im euklidischen Raum und gewöhnliche Differentialgleichungen.- 1.6. Diskrete Bewegungen im euklidischen Raum und gewöhnliche Differenzengleichungen.- 1.7. Dynamische Systeme.- 1.8. Bewegungen in metrischen Räumen und partielle Differentialgleichungen.- 1.9. Allgemeine Systeme.- 1.10. Differential-Differenzengleichungen.- 2. Stabilitätsbegriffe.- 2.1. Stabilität von Bewegungen.- 2.2. Stabilität von gewöhnlichen und partiellen Differentialgleichungen sowie von Differenzengleichungen.- 2.3. Stabilität dynamischer Systeme.- 2.4. Stabilität allgemeiner Systeme.- 2.5. Stabilität von Differential-Differenzengleichungen.- 3. Das Stabilitätsverhalten linearer Differential- und Differenzengleichungen und der Grundgedanke der direkten Methode von Ljapunow.- 3.1. Das Stabilitätsverhalten linearer Differential- und Differenzengleichungen.- 3.2. Der Grundgedanke der direkten Methode von Ljapunow.- 3.3. Ljapunow-Eunktionen für Differential- und Differenzengleichungen.- 4. Stabilitätsbedingungen für gewöhnliche Differentialgleichungen.- 4.1. Die fundamentalen Stabilitätssätze der direkten Methode.- 4.2. Die fundamentalen Sätze über die Existenz von Ljapunow-Funktionen.- 4.3. Stabilität nach der ersten Näherung.- 4.4. Einzugsgebiete.- 5. Stabilitätsbedingungen für Differenzengleichungen.- 6. Stabilitätsbedingungen für dynamische Systeme.- 7. Stabilitätsbedingungen für partielle Differentialgleichungen.- 8. Stabilitätsbedingungen für allgemeine Systeme.- 9. Stabilitätsbedingungen für Differential-Differenzengleichungen.
1. Grundlegende Begriffe.- 1.1. Der Bewegungsraum.- 1.2. Funktionen.- 1.3. Matrizen.- 1.4. Metrische Räume.- 1.5. Bewegungen im euklidischen Raum und gewöhnliche Differentialgleichungen.- 1.6. Diskrete Bewegungen im euklidischen Raum und gewöhnliche Differenzengleichungen.- 1.7. Dynamische Systeme.- 1.8. Bewegungen in metrischen Räumen und partielle Differentialgleichungen.- 1.9. Allgemeine Systeme.- 1.10. Differential-Differenzengleichungen.- 2. Stabilitätsbegriffe.- 2.1. Stabilität von Bewegungen.- 2.2. Stabilität von gewöhnlichen und partiellen Differentialgleichungen sowie von Differenzengleichungen.- 2.3. Stabilität dynamischer Systeme.- 2.4. Stabilität allgemeiner Systeme.- 2.5. Stabilität von Differential-Differenzengleichungen.- 3. Das Stabilitätsverhalten linearer Differential- und Differenzengleichungen und der Grundgedanke der direkten Methode von Ljapunow.- 3.1. Das Stabilitätsverhalten linearer Differential- und Differenzengleichungen.- 3.2. Der Grundgedanke der direkten Methode von Ljapunow.- 3.3. Ljapunow-Eunktionen für Differential- und Differenzengleichungen.- 4. Stabilitätsbedingungen für gewöhnliche Differentialgleichungen.- 4.1. Die fundamentalen Stabilitätssätze der direkten Methode.- 4.2. Die fundamentalen Sätze über die Existenz von Ljapunow-Funktionen.- 4.3. Stabilität nach der ersten Näherung.- 4.4. Einzugsgebiete.- 5. Stabilitätsbedingungen für Differenzengleichungen.- 6. Stabilitätsbedingungen für dynamische Systeme.- 7. Stabilitätsbedingungen für partielle Differentialgleichungen.- 8. Stabilitätsbedingungen für allgemeine Systeme.- 9. Stabilitätsbedingungen für Differential-Differenzengleichungen.