Theory, Numerics and Applications of Hyperbolic Problems II (eBook, PDF)
Aachen, Germany, August 2016
Redaktion: Klingenberg, Christian; Westdickenberg, Michael
177,95 €
177,95 €
inkl. MwSt.
Sofort per Download lieferbar
89 °P sammeln
177,95 €
Als Download kaufen
177,95 €
inkl. MwSt.
Sofort per Download lieferbar
89 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
177,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
89 °P sammeln
Theory, Numerics and Applications of Hyperbolic Problems II (eBook, PDF)
Aachen, Germany, August 2016
Redaktion: Klingenberg, Christian; Westdickenberg, Michael
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The second of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 20.23MB
Andere Kunden interessierten sich auch für
- Theory, Numerics and Applications of Hyperbolic Problems I (eBook, PDF)177,95 €
- Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016 (eBook, PDF)161,95 €
- John M. BallMathematical Thermodynamics of Complex Fluids (eBook, PDF)36,95 €
- Grzegorz LukaszewiczNavier-Stokes Equations (eBook, PDF)97,95 €
- Mathematical Fluid Dynamics, Present and Future (eBook, PDF)113,95 €
- Brian StraughanConvection with Local Thermal Non-Equilibrium and Microfluidic Effects (eBook, PDF)67,95 €
- Alfio QuarteroniReduced Basis Methods for Partial Differential Equations (eBook, PDF)40,95 €
-
-
-
The second of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer International Publishing
- Seitenzahl: 714
- Erscheinungstermin: 27. Juni 2018
- Englisch
- ISBN-13: 9783319915487
- Artikelnr.: 56816746
- Verlag: Springer International Publishing
- Seitenzahl: 714
- Erscheinungstermin: 27. Juni 2018
- Englisch
- ISBN-13: 9783319915487
- Artikelnr.: 56816746
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Christian Klingenberg is a professor in the Department of Mathematics at Wuerzburg University, Germany. Michael Westdickenberg is a professor at the Institute for Mathematics at RWTH Aachen University, Germany.
Hu, J., Jin, S. and Shu, R: A Stochastic Galerkin Method for the Fokker-Planck-Landau Equation with Random Uncertainties.- Hu, G., Meng, X. and Tang, T: On Robust and Adaptive Finite Volume Methods for Steady Euler Equations.- Hunter, J. K: The Burgers-Hilbert Equation.- Jaust, A. and Schutz, J: General Linear Methods for Time-Dependent PDEs.- Jiang, Y. and Liu, H: An Invariant-Region-Preserving (IRP) Limiter to DG Methods for Compressible Euler Equations.- Jiang, N: beta -Schemes with Source Terms and the Convergence Analysis.- Kabil, B: Existence of Undercompressive Shock Wave Solutions to the Euler Equations.- Karite, T., Boutoulout, A. and Alaoui, F. Z. E: Some Numerical Results of Regional Boundary Controllability with Output Constraints.- Kausar, R. and Trenn, S: Water Hammer Modeling for Water Networks via Hyperbolic PDEs and Switched DAEs.- Kiri, Y. and Ueda, Y: Stability Criteria for Some System of Delay Differential Equations.- Klima, M., Kucharik, M., Shashkov, M. and Velechovsky, J: Bound-Preserving Reconstruction of Tensor Quantities for Remap in ALE Fluid Dynamics.- Klingenberg, C. and Thomann, A: On Computing Compressible Euler Equations with Gravity.- Klingenberg, C., Klotzky, J. and Seguin, N: On Well-Posedness for a Multi-Particle-Fluid Model.- Klingenberg, C., Li, Q. and Pirner, M: On Quantifying Uncertainties for the Linearized BGK Kinetic Equation.- Klingenberg, C., Pirner, M. and Puppo, G: Kinetic ES-BGK Models for a Multi-Component Gas Mixture.- Klingenberg, C., Schnücke, G. and Xia, Y: An Arbitrary Lagrangian-Eulerian Discontinuous Galerkin Method for Conservation Laws: Entropy Stability.- Koellermeier, J. and Torrilhon, M: Simplified Hyperbolic Moment Equations.- Korsch, A: Weakly Coupled Systems of Conservation Laws on Moving Surfaces.- Krankel, M. and Kröner, D: A Phasefield Model for Flows with Phasetransition.- Lambert, W. J., Alvarez, A. C., Marchesin, D. and Bruining, J: Mathematical Theory of Two Phase Geochemical Flow with Chemical Species.- Lee, M-G., Katsaounis, T. and Tzavaras, A. E: Localization of Adiabatic Deformations in Thermoviscoplastic Materials.- LeFloch, P. G: The Global Nonlinear Stability of Minkowski Spacetime for Self-Gravitating Massive Fields.- Magiera, J. and Rohde, C: A Particle-Based Multiscale Solver for Compressible Liquid-Vapor Flow.- Mascia, C. and Nguyen, T. T: Lp-Lq Decay Estimates for Dissipative Linear Hyperbolic Systems in 1D.- Mifsud, C. and Despres, B: A Numerical Approach of Friedrichs' Systems Under Constraints in Bounded Domains.- Modena, S: Lagrangian Representation for Systems of Conservation Laws: An Overview.- Murti, R., Baskar, S. and Prasad, P: Kinematical Conservation Laws in Inhomogeneous Media.- Offner, P., Glaubitz, J., Ranocha, H. and Sonar, T: Artificial Viscosity for Correction Procedure via Reconstruction Using Summation-by-Parts Operators.- Ohnawa, M: On A Relation Between Shock Profiles and Stabilization Mechanisms in a Radiating Gas Model.- Panov, E. Y: On the Long-time Behavior of Almost Periodic Entropy Solutions to Scalar Conservations Laws.- Pareschi, L. and Zanella, M: Structure Preserving Schemes for Mean-Field Equations of Collective Behaviour.- Pelanti, M., Shyue, K-M. and Flatten, T: A Numerical Model for Three-Phase Liquid-Vapor-Gas Flows with Relaxation Processes.- Peralta, G: Feedback Stabilization of a Linear Fluid-Membrane System with Time-Delay.- Peshkov, I., Romenski, E. and Dumbser, M: A Unified Hyperbolic Formulation for Viscous Fluids and Elastoplastic Solids.- Pichard, T., Dubroca, B., Brull, S. and Frank, M: On the Transverse Diffusion of Beams of Photons in Radiation Therapy.- Prebeg, M: Numerical Viscosity in Large Time Step HLL-type Schemes.- Ranocha, H., Offner, P. and Sonar, T: Correction Procedure via Reconstruction Using Summation-by-parts Operators.- Ray, D: A Third-Order Entropy Stable Scheme for the Compressible Euler Equations.- Roe, P: Did Numerical Methods for Hyperbolic Problems Take a Wrong Turning?.- Röpke, F. K: Astrophysical Fluid Dynamics and Applications to Stellar Modelling.- Rozanova, O. S. and Turzynsky, M. K: Nonlinear Stability of Localized and Non-localized Vortices in Rotating Compressible Media.- Sahu, S: Coupled Scheme for Hamilton-Jacobi Equations.- Seguin, N: Compressible Heterogeneous Two-Phase Flows.- Shu, C-W: Bound-Preserving High Order Schemes for Hyperbolic Equations: Survey and Recent Developments.- Sikstel, A., Kusters, A., Frings, M., Noelle, S. and Elgeti, S: Comparison of Shallow Water Models for Rapid Channel Flows.- Straub, V., Ortleb, S., Birken, P. and Meister, A: On Stability and Conservation Properties of (s)EPIRK Integrators in the Context of Discretized PDEs.- Wang, T-Y: Compactness on Multidimensional Steady Euler Equations.- Weber, F: A Constraint Preserving Finite Difference Method for the Damped Wave Map Equation to the Sphere.- Yagdjian, K: Integral Transform Approach to Solving Klein-Gordon Equation with Variable Coefficients.- Zakerzadeh, H: Asymptotic Consistency of the RS-IMEX Scheme for the Low-Froude Shallow Water Equations: Analysis and Numeric.- Zakerzadeh, M and May, G: Class of Space-Time Entropy Stable DG Schemes for Systems of Convection-Diffusion.- Zumbrun, K: Invariant Manifolds for a Class of Degenerate Evolution Equations and Structure of Kinetic Shock Layers.
Hu, J., Jin, S. and Shu, R: A Stochastic Galerkin Method for the Fokker-Planck-Landau Equation with Random Uncertainties.- Hu, G., Meng, X. and Tang, T: On Robust and Adaptive Finite Volume Methods for Steady Euler Equations.- Hunter, J. K: The Burgers-Hilbert Equation.- Jaust, A. and Schutz, J: General Linear Methods for Time-Dependent PDEs.- Jiang, Y. and Liu, H: An Invariant-Region-Preserving (IRP) Limiter to DG Methods for Compressible Euler Equations.- Jiang, N: beta -Schemes with Source Terms and the Convergence Analysis.- Kabil, B: Existence of Undercompressive Shock Wave Solutions to the Euler Equations.- Karite, T., Boutoulout, A. and Alaoui, F. Z. E: Some Numerical Results of Regional Boundary Controllability with Output Constraints.- Kausar, R. and Trenn, S: Water Hammer Modeling for Water Networks via Hyperbolic PDEs and Switched DAEs.- Kiri, Y. and Ueda, Y: Stability Criteria for Some System of Delay Differential Equations.- Klima, M., Kucharik, M., Shashkov, M. and Velechovsky, J: Bound-Preserving Reconstruction of Tensor Quantities for Remap in ALE Fluid Dynamics.- Klingenberg, C. and Thomann, A: On Computing Compressible Euler Equations with Gravity.- Klingenberg, C., Klotzky, J. and Seguin, N: On Well-Posedness for a Multi-Particle-Fluid Model.- Klingenberg, C., Li, Q. and Pirner, M: On Quantifying Uncertainties for the Linearized BGK Kinetic Equation.- Klingenberg, C., Pirner, M. and Puppo, G: Kinetic ES-BGK Models for a Multi-Component Gas Mixture.- Klingenberg, C., Schnücke, G. and Xia, Y: An Arbitrary Lagrangian-Eulerian Discontinuous Galerkin Method for Conservation Laws: Entropy Stability.- Koellermeier, J. and Torrilhon, M: Simplified Hyperbolic Moment Equations.- Korsch, A: Weakly Coupled Systems of Conservation Laws on Moving Surfaces.- Krankel, M. and Kröner, D: A Phasefield Model for Flows with Phasetransition.- Lambert, W. J., Alvarez, A. C., Marchesin, D. and Bruining, J: Mathematical Theory of Two Phase Geochemical Flow with Chemical Species.- Lee, M-G., Katsaounis, T. and Tzavaras, A. E: Localization of Adiabatic Deformations in Thermoviscoplastic Materials.- LeFloch, P. G: The Global Nonlinear Stability of Minkowski Spacetime for Self-Gravitating Massive Fields.- Magiera, J. and Rohde, C: A Particle-Based Multiscale Solver for Compressible Liquid-Vapor Flow.- Mascia, C. and Nguyen, T. T: Lp-Lq Decay Estimates for Dissipative Linear Hyperbolic Systems in 1D.- Mifsud, C. and Despres, B: A Numerical Approach of Friedrichs' Systems Under Constraints in Bounded Domains.- Modena, S: Lagrangian Representation for Systems of Conservation Laws: An Overview.- Murti, R., Baskar, S. and Prasad, P: Kinematical Conservation Laws in Inhomogeneous Media.- Offner, P., Glaubitz, J., Ranocha, H. and Sonar, T: Artificial Viscosity for Correction Procedure via Reconstruction Using Summation-by-Parts Operators.- Ohnawa, M: On A Relation Between Shock Profiles and Stabilization Mechanisms in a Radiating Gas Model.- Panov, E. Y: On the Long-time Behavior of Almost Periodic Entropy Solutions to Scalar Conservations Laws.- Pareschi, L. and Zanella, M: Structure Preserving Schemes for Mean-Field Equations of Collective Behaviour.- Pelanti, M., Shyue, K-M. and Flatten, T: A Numerical Model for Three-Phase Liquid-Vapor-Gas Flows with Relaxation Processes.- Peralta, G: Feedback Stabilization of a Linear Fluid-Membrane System with Time-Delay.- Peshkov, I., Romenski, E. and Dumbser, M: A Unified Hyperbolic Formulation for Viscous Fluids and Elastoplastic Solids.- Pichard, T., Dubroca, B., Brull, S. and Frank, M: On the Transverse Diffusion of Beams of Photons in Radiation Therapy.- Prebeg, M: Numerical Viscosity in Large Time Step HLL-type Schemes.- Ranocha, H., Offner, P. and Sonar, T: Correction Procedure via Reconstruction Using Summation-by-parts Operators.- Ray, D: A Third-Order Entropy Stable Scheme for the Compressible Euler Equations.- Roe, P: Did Numerical Methods for Hyperbolic Problems Take a Wrong Turning?.- Röpke, F. K: Astrophysical Fluid Dynamics and Applications to Stellar Modelling.- Rozanova, O. S. and Turzynsky, M. K: Nonlinear Stability of Localized and Non-localized Vortices in Rotating Compressible Media.- Sahu, S: Coupled Scheme for Hamilton-Jacobi Equations.- Seguin, N: Compressible Heterogeneous Two-Phase Flows.- Shu, C-W: Bound-Preserving High Order Schemes for Hyperbolic Equations: Survey and Recent Developments.- Sikstel, A., Kusters, A., Frings, M., Noelle, S. and Elgeti, S: Comparison of Shallow Water Models for Rapid Channel Flows.- Straub, V., Ortleb, S., Birken, P. and Meister, A: On Stability and Conservation Properties of (s)EPIRK Integrators in the Context of Discretized PDEs.- Wang, T-Y: Compactness on Multidimensional Steady Euler Equations.- Weber, F: A Constraint Preserving Finite Difference Method for the Damped Wave Map Equation to the Sphere.- Yagdjian, K: Integral Transform Approach to Solving Klein-Gordon Equation with Variable Coefficients.- Zakerzadeh, H: Asymptotic Consistency of the RS-IMEX Scheme for the Low-Froude Shallow Water Equations: Analysis and Numeric.- Zakerzadeh, M and May, G: Class of Space-Time Entropy Stable DG Schemes for Systems of Convection-Diffusion.- Zumbrun, K: Invariant Manifolds for a Class of Degenerate Evolution Equations and Structure of Kinetic Shock Layers.