57,95 €
57,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
29 °P sammeln
57,95 €
57,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
29 °P sammeln
Als Download kaufen
57,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
29 °P sammeln
Jetzt verschenken
57,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
29 °P sammeln
  • Format: PDF

The flavor and organization of the first edition has been retained whereby the reader is guided through the analysis process for systems and then components. Important new material has been added regarding altitude effects on forced and buoyancy driven airflow and heat transfer.

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 14.39MB
Produktbeschreibung
The flavor and organization of the first edition has been retained whereby the reader is guided through the analysis process for systems and then components. Important new material has been added regarding altitude effects on forced and buoyancy driven airflow and heat transfer.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Gordon N. Ellison has a BA in Physics from the University of California at Los Angeles (UCLA) and an MA in Physics from the University of Southern California (USC). His career in thermal engineering includes twelve years as a Technical Specialist at NCR and eighteen years at Tektronix, Inc., retiring from the latter as a Tektronix Fellow. Over the last fifteen years Ellison has been an independent consultant and has also taught the course, Thermal Analysis for Electronics, at Portland State University, Oregon. He has also designed and written several thermal analysis computer codes.
Rezensionen
I've been amazed with the content of this book, which goes from the basics and teach you the basics principle of heat and thermal, but also give you very practical examples, which really give you a sense of how this works.
I hope that this book can be really useful, especially if you're interested in looking at cooling. And there are some great knowledge too, to gain from this book, especially if you want to understand not only how to simulate that, but also how to understand the physics behind it in the more natural manner, lets say without necessarily having to compute everything on the computer first.

You can use thermal networks theory, or you can use various things like that, that can help you to get an idea of the temperature into your system without having to compute everything first. And, I think this really helps for engineers who works with thermal.
-Cyprien Rusu, FEA Expert, MIDAS IT