102,99 €
102,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
102,99 €
102,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
102,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
102,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: PDF

The ability of thermal energy storage (TES) systems to facilitate energy savings, renewable energy use and reduce environmental impact has led to a recent resurgence in their interest. The second edition of this book offers up-to-date coverage of recent energy efficient and sustainable technological methods and solutions, covering analysis, design and performance improvement as well as life-cycle costing and assessment. As well as having significantly revised the book for use as a graduate text, the authors address real-life technical and operational problems, enabling the reader to gain an…mehr

Produktbeschreibung
The ability of thermal energy storage (TES) systems to facilitate energy savings, renewable energy use and reduce environmental impact has led to a recent resurgence in their interest. The second edition of this book offers up-to-date coverage of recent energy efficient and sustainable technological methods and solutions, covering analysis, design and performance improvement as well as life-cycle costing and assessment. As well as having significantly revised the book for use as a graduate text, the authors address real-life technical and operational problems, enabling the reader to gain an understanding of the fundamental principles and practical applications of thermal energy storage technology. Beginning with a general summary of thermodynamics, fluid mechanics and heat transfer, this book goes on to discuss practical applications with chapters that include TES systems, environmental impact, energy savings, energy and exergy analyses, numerical modeling and simulation, case studies and new techniques and performance assessment methods.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Ibrahim Dincer & Mark Rosen, University of Ontario Institute of Technology (UOIT), Canada Ibrahim Dincer is Professor of Mechanical Engineering within the Faculty of Engineering and Applied Science at UOIT. His research interests include energy and energy conversion management, heat and mass transfer, thermodynamics, drying, refrigeration and thermal energy storage. He has received numerous awards for excellence in research, and is the Editor-in-Chief of the Wiley International Journal of Energy Research as well as the Elsevier journal Exergy: An International Journal. He has authored or co-authored 5 books - Exergy, 2006, Elsevier, Porous Media in Modern Technologies, Springer, 2004, Refrigeration Systems and Applications, Wiley, 2003, Thermal Energy Storage Systems and Applications, Wiley 2002, and Heat Transfer in Food Cooling Applications, Taylor & Francis, 2003. Mark Rosen is Professor and founding Dean of the Faculty of Engineering and Applied Science at the University of Ontario Institute of Technology in Oshawa, Canada. Prior to this appointment in 2002, he was a professor in the Department of Mechanical, Aerospace and Industrial Engineering at Ryerson University in Toronto, Canada for 16 years. He has also worked for such organizations as Imatra Power Company in Finland, Argonne National Laboratory near Chicago, and the Institute for Hydrogen Systems, near Toronto. With over 40 research grants and contracts and 350 technical publications, Dr. Rosen is an active teacher and researcher in thermodynamics and energy conversion. He was President of the Canadian Society for Mechanical Engineering from 2002 to 2004.