Thermal Management of Electric Vehicle Battery Systems (eBook, PDF)
Alle Infos zum eBook verschenken
Thermal Management of Electric Vehicle Battery Systems (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Thermal Management of Electric Vehicle Battery Systems provides a thorough examination of various conventional and cutting edge electric vehicle (EV) battery thermal management systems (including phase change material) that are currently used in the industry as well as being proposed for future EV batteries. It covers how to select the right thermal management design, configuration and parameters for the users' battery chemistry, applications and operating conditions, and provides guidance on the setup, instrumentation and operation of their thermal management systems (TMS) in the most…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 19.69MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 480
- Erscheinungstermin: 29. Dezember 2016
- Englisch
- ISBN-13: 9781118900215
- Artikelnr.: 47400710
- Verlag: John Wiley & Sons
- Seitenzahl: 480
- Erscheinungstermin: 29. Dezember 2016
- Englisch
- ISBN-13: 9781118900215
- Artikelnr.: 47400710
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Acknowledgements xvii
1 Introductory Aspects of Electric Vehicles 1
1.1 Introduction 1
1.2 Technology Development and Commercialization 2
1.3 Vehicle Configurations 4
1.3.1 Internal Combustion Engine Vehicles (ICEV) 4
1.3.2 All Electric Vehicles (AEVs) 6
1.3.3 Hybrid Electric Vehicles (HEVs) 7
1.3.4 Fuel Cell Vehicles (FCVs) 10
1.4 Hybridization Rate 10
1.4.1 Micro HEVs 11
1.4.2 Mild HEVs 11
1.4.3 Full or Power-Assist HEVs 12
1.4.4 Plug-In HEVs (or Range-Extended Hybrids) 12
1.5 Vehicle Architecture 13
1.5.1 Series HEVs 14
1.5.2 Parallel HEVs 14
1.5.3 Parallel/Series HEVs 14
1.5.4 Complex HEVs 15
1.6 Energy Storage System 15
1.6.1 Batteries 15
1.6.2 Ultracapacitors (UCs) 17
1.6.3 Flywheels 18
1.6.4 Fuel Cells 18
1.7 Grid Connection 20
1.7.1 Charger Power Levels and Infrastructure 20
1.7.2 Conductive Charging 21
1.7.3 Inductive Charging 22
1.7.4 Smart Grid and V2G/V2H/V2X Systems 23
1.8 Sustainability, Environmental Impact and Cost Aspects 27
1.9 Vehicle Thermal Management 28
1.9.1 Radiator Circuit 29
1.9.2 Power Electronics Circuit 29
1.9.3 Drive Unit Circuit 30
1.9.4 A/C Circuit 30
1.10 Vehicle Drive Patterns and Cycles 33
1.11 Case Study 34
1.11.1 Introduction 34
1.11.2 Research Programs 34
1.11.3 Government Incentives 35
1.11.3.1 Tax Benefits 35
1.11.3.2 EV Supply Equipment and Charging Infrastructure 36
1.11.3.3 EV Developments in the Turkish Market 36
1.11.3.4 HEVs on the Road 38
1.11.3.5 Turkey's Standing in the World 39
1.11.3.6 SWOT Analysis 43
1.12 Concluding Remarks 43
Nomenclature 44
Study Questions/Problems 44
References 45
2 Electric Vehicle Battery Technologies 49
2.1 Introduction 49
2.2 Current Battery Technologies 49
2.2.1 Lead Acid Batteries 51
2.2.2 Nickel Cadmium Batteries 52
2.2.3 Nickel Metal Hydride Batteries 52
2.2.4 Lithium-Ion Batteries 54
2.3 Battery Technologies under Development 57
2.3.1 Zinc-Air Batteries 59
2.3.2 Sodium-Air Batteries 60
2.3.3 Lithium-Sulfur Batteries 60
2.3.4 Aluminum-Air Batteries 61
2.3.5 Lithium-Air Batteries 61
2.4 Battery Characteristics 63
2.4.1 Battery Cost 63
2.4.2 Battery Environmental Impact 64
2.4.3 Battery Material Resources 68
2.4.4 Impact of Various Loads and Environmental Conditions 70
2.5 Battery Management Systems 72
2.5.1 Data Acquisition 75
2.5.2 Battery States Estimation 76
2.5.2.1 SOC Estimation Algorithm 76
2.5.2.2 SOH Estimation Algorithms 78
2.5.2.3 SOF Estimation Algorithms 78
2.5.3 Charge Equalization 78
2.5.3.1 Hierarchical Architecture Platform/Communication 80
2.5.3.2 Cell Equalization 80
2.5.4 Safety Management/Fault Diagnosis 81
2.5.5 Thermal Management 83
2.6 Battery Manufacturing and Testing Processes 83
2.6.1 Manufacturing Processes 83
2.6.2 Testing Processes 85
2.7 Concluding Remarks 88
Nomenclature 88
Study Questions/Problems 88
References 89
3 Phase Change Materials for Passive TMSs 93
3.1 Introduction 93
3.2 Basic Properties and Types of PCMs 93
3.2.1 Organic PCMs 100
3.2.1.1 Paraffins 101
3.2.1.2 Non-Paraffins 101
3.2.2 Inorganic PCMs 102
3.2.2.1 Salt Hydrates 102
3.2.2.2 Metals 103
3.2.3 Eutectics 104
3.3 Measurement of Thermal Properties of PCMs 104
3.4 Heat Transfer Enhancements 107
3.5 Cost and Environmental Impact of Phase Change Materials 110
3.6 Applications of PCMs 111
3.7 Case Study I: Heat Exchanger Design and Optimization Model for EV
Batteries using PCMs 114
3.7.1 System Description and Parameters 114
3.7.1.1 Simplified System Diagram 114
3.7.1.2 PCM Selection For the Application 115
3.7.1.3 Nano-Particles and PCM Mixture For Thermal Conductivity Enhancement
116
3.7.1.4 Thermal Modeling of Heat Exchanger 117
3.7.2 Design and Optimization of the Latent Heat Thermal Energy Storage
System 119
3.7.2.1 Objective Functions, Design Parameters and Constraints 119
3.7.2.2 Effective Properties of the PCM and Nanotubes 119
3.7.2.3 Combined Condition 121
3.7.2.4 Model Description 121
3.7.2.5 Sensitivity Analysis 121
3.7.2.6 Helical Tube Heat Exchanger 127
3.8 Case Study 2: Melting and Solidification of Paraffin in a Spherical
Shell from Forced External Convection 128
3.8.1 Validation of Numerical Model and Model Independence Testing 130
3.8.2 Performance Criteria 133
3.8.3 Results and Discussion 135
3.9 Concluding Remarks 141
Nomenclature 141
Study Questions/Problems 143
References 143
4 Simulation and Experimental Investigation of Battery TMSs 145
4.1 Introduction 145
4.2 Numerical Model Development for Cell and Submodules 146
4.2.1 Physical Model for Numerical Study of PCM Application 146
4.2.2 Initial and Boundary Conditions and Model Assumptions 147
4.2.3 Material Properties and Model Input Parameters 148
4.2.3.1 Li-ion Cell Properties 148
4.2.3.2 Phase Change Material (PCM) 149
4.2.3.3 Foam Material 153
4.2.3.4 Cooling Plate 153
4.2.4 Governing Equations and Constitutive Laws 153
4.2.5 Model Development for Simulations 155
4.2.5.1 Mesh Generation 156
4.2.5.2 Discretization Scheme 156
4.2.5.3 Under-Relaxation Scheme 157
4.2.5.4 Convergence Criteria 157
4.3 Cell and Module Level Experimentation Set Up and Procedure 157
4.3.1 Instrumentation of the Cell and Submodule 158
4.3.2 Instrumentation of the Heat Exchanger 159
4.3.3 Preparation of PCMs and Nano-Particle Mixtures 161
4.3.4 Improving Surface Arrangements of Particles 163
4.3.5 Setting up the Test Bench 164
4.4 Vehicle Level Experimentation Set Up and Procedure 166
4.4.1 Setting Up the Data Acquisition Hardware 166
4.4.2 Setting Up the Data Acquisition Software 168
4.5 Illustrative Example: Simulations and Experimentations on the Liquid
Battery Thermal Management System Using PCMs 172
4.5.1 Simulations and Experimentations on Cell Level 174
4.5.1.1 Grid Independence Tests 175
4.5.1.2 Effect of Contact Resistance on Heat Transfer Rate 176
4.5.1.3 Simulation Results For Li-ion cell Without PCM in Steady State and
Transient Response 177
4.5.1.4 Simulation Results For PCM in Steady-State and Transient Conditions
180
4.5.1.5 Cooling Effectiveness In the Cell 185
4.5.2 Simulation and Experimentations Between the Cells in the Submodule
186
4.5.2.1 Effective Properties of Soaked Foam 187
4.5.2.2 Steady State Response of the Cells in the Submodule 188
4.5.2.3 Transient Response of the Submodule 189
4.5.2.4 Submodule with Dry and Wet Foam at Higher Heat Generation Rates 191
4.5.3 Simulations and Experimentations on a Submodule Level 192
4.5.3.1 Steady-State Response of the Submodule Without PCMs 193
4.5.3.2 Steady-State Results of the Submodule with PCMs 196
4.5.3.3 Transient Response of the Submodule 197
4.5.3.4 Quasi-Steady Response of the Submodule 198
4.5.3.5 Model Validation 201
4.5.4 Optical Observations 203
4.5.4.1 Thermal Conductivity Enhancement by Nanoparticles 203
4.5.4.2 Data For the Case of Pure PCM (99% Purity) 208
4.5.4.3 Optical Microscopy Analysis of the PCM and Nanoparticle Mixture 208
4.5.5 Vehicle Level Experimentations 214
4.5.5.1 Test Bench Experimentations 215
4.5.5.2 Test Vehicle Experimentations 218
4.5.6 Case Study Conclusions 225
4.6 Concluding Remarks 226
Nomenclature 227
Study Questions/Problems 228
References 229
5 Energy and Exergy Analyses of Battery TMSs 231
5.1 Introduction 231
5.2 TMS Comparison 232
5.2.1 Thermodynamic Analysis 233
5.2.2 Battery Heat Transfer Analysis 237
5.2.2.1 Battery Temperature Distribution 237
5.2.2.2 Battery Temperature Uniformity 239
5.3 Modeling of Major TMS Components 240
5.3.1 Compressor 242
5.3.2 Heat Exchangers 243
5.3.3 Thermal Expansion Valve (TXV) 245
5.3.4 Electric Battery 246
5.3.5 System Parameters 246
5.4 Energy and Exergy Analyses 247
5.4.1 Conventional Analysis 247
5.4.2 Enhanced Exergy Analysis 253
5.5 Illustrative Example: Liquid Battery Thermal Management Systems 256
5.6 Case Study: Transcritical CO2-Based Electric Vehicle BTMS 269
5.6.1 Introduction 270
5.6.2 System Development 272
5.6.3 Thermodynamic Analysis 275
5.6.4 Results and Discussion 276
5.6.5 Case Study Conclusions 281
5.7 Concluding Remarks 282
Nomenclature 282
Study Questions/Problems 284
References 285
6 Cost, Environmental Impact and Multi-Objective Optimization of Battery
TMSs 287
6.1 Introduction 287
6.2 Exergoeconomic Analysis 288
6.2.1 Cost Balance Equations 288
6.2.2 Purchase Equipment Cost Correlations 290
6.2.3 Cost Accounting 291
6.2.4 Exergoeconomic Evaluation 293
6.2.5 Enhanced Exergoeconomic Analysis 293
6.2.6 Enviroeconomic (Environmental Cost) Analysis 294
6.3 Exergoenvironmental Analysis 295
6.3.1 Environmental Impact Balance Equations 295
6.3.2 Environmental Impact Correlations 296
6.3.3 LCA of the Electric Battery 297
6.3.4 Environmental Impact Accounting 299
6.3.5 Exergoenvironmental Evaluation 300
6.4 Optimization Methodology 301
6.4.1 Objective Functions 301
6.4.2 Decision Variables and Constraints 302
6.4.3 Genetic Algorithm 303
6.5 Illustrative Example: Liquid Battery Thermal Management Systems 306
6.5.1 Conventional Exergoeconomic Analysis Results 307
6.5.2 Enhanced Exergoeconomic Analysis Results 309
6.5.3 Battery Environmental Impact Assessment 314
6.5.4 Exergoenvironmental Analysis Results 316
6.5.5 Multi-Objective Optimization Results 319
6.5.5.1 Case Study Conclusions 324
6.6 Concluding Remarks 325
Nomenclature 326
Study Questions/Problems 327
References 328
7 Case Studies 329
7.1 Introduction 329
7.2 Case Study 1: Economic and Environmental Comparison of Conventional,
Hybrid, Electric and Hydrogen Fuel Cell Vehicles 329
7.2.1 Introduction 329
7.2.2 Analysis 330
7.2.2.1 Economic Criteria 330
7.2.2.2 Environmental Impact Criteria 331
7.2.2.3 Normalization and General Indicator 334
7.2.3 Results and Discussion 335
7.2.4 Closing Remarks 338
7.3 Case Study 2: Experimental and Theoretical Investigation of Temperature
Distributions in a Prismatic Lithium-Ion Battery 339
7.3.1 Introduction 339
7.3.2 System Description 340
7.3.3 Analysis 341
7.3.3.1 Temperature Measurements 341
7.3.3.2 Heat Generation 342
7.3.4 Results and Discussion 342
7.3.4.1 Battery Discharge Voltage Profile 342
7.3.4.2 Battery Internal Resistance Profile 343
7.3.4.3 Effect of Discharge Rates and Operating Temperature on Battery
Performance 344
7.3.4.4 Model Development and Validation 344
7.3.5 Closing Remarks 350
7.4 Case Study 3: Thermal Management Solutions for Electric Vehicle
Lithium-Ion Batteries based on Vehicle Charge and Discharge Cycles 351
7.4.1 Introduction 351
7.4.2 System Description 351
7.4.3 Analysis 352
7.4.3.1 Design of Hybrid Test Stand For Thermal Management 352
7.4.3.2 Battery Cooling System 356
7.4.3.3 Sensors and Flow Meter 356
7.4.3.4 Compression Rig 356
7.4.3.5 Battery 359
7.4.3.6 Thermal Management System - Experimental Plan and Procedure 359
7.4.3.7 Data Analysis Method 361
7.4.4 Results and Discussion 364
7.4.4.1 Battery Surface Temperature Profile 365
7.4.4.2 Average Surface Temperature of Battery 366
7.4.4.3 Average Heat Flux 368
7.4.4.4 Peak Heat Flux 369
7.4.4.5 Heat Generation Rate 369
7.4.4.6 Total Heat Generated 373
7.4.4.7 Effect of Discharge Rate and Operating Temperature on Discharge
Capacity 373
7.4.5 Closing Remarks 374
7.5 Case Study 4: Heat Transfer and Thermal Management of Electric Vehicle
Batteries with Phase Change Materials 375
7.5.1 Introduction 375
7.5.2 System Description 375
7.5.3 Analysis 378
7.5.3.1 Exergy Analysis 378
7.5.3.2 Numerical Study 379
7.5.4 Results and Discussion 379
7.5.4.1 CFD Analysis 379
7.5.4.2 Part II: Exergy Analysis 385
7.5.5 Closing Remarks 388
7.6 Case Study 5: Experimental and Theoretical Investigation of Novel Phase
Change Materials For Thermal Applications 389
7.6.1 Introduction 389
7.6.2 System Description 390
7.6.2.1 Experimental Layouts 393
7.6.2.2 Challenges 397
7.6.3 Analysis 397
7.6.3.1 Analysis of Constant Temperature Bath 402
7.6.3.2 Analysis of Hot Air Duct 402
7.6.3.3 Analysis of Battery Cooling 403
7.6.3.4 Energy and Exergy Analyses 403
7.6.4 Results and Discussion 407
7.6.4.1 Test Results of Base PCM 408
7.6.4.2 Results of Battery Cooling Tests 410
7.6.4.3 Results of Energy and Exergy Analyses on Base Clathrate 412
7.6.4.4 Results of Thermoeconomic Analysis 415
7.6.5 Closing Remarks 417
Nomenclature 419
References 423
8 Alternative Dimensions and Future Expectations 425
8.1 Introduction 425
8.2 Outstanding Challenges 425
8.2.1 Consumer Perceptions 425
8.2.2 Socio-Technical Factors 427
8.2.3 Self-Reinforcing Processes 429
8.3 Emerging EV Technologies and Trends 431
8.3.1 Active Roads 431
8.3.2 V2X and Smart Grid 432
8.3.3 Battery Swapping 433
8.3.4 Battery Second Use 435
8.4 Future BTM Technologies 437
8.4.1 Thermoelectric Materials 437
8.4.2 Magnetic Cooling 438
8.4.3 Piezoelectric Fans/Dual Cooling Jets 438
8.4.4 Other Potential BTMSs 440
8.5 Concluding Remarks 441
Nomenclature 441
Study Questions/Problems 441
References 442
Index 445
Acknowledgements xvii
1 Introductory Aspects of Electric Vehicles 1
1.1 Introduction 1
1.2 Technology Development and Commercialization 2
1.3 Vehicle Configurations 4
1.3.1 Internal Combustion Engine Vehicles (ICEV) 4
1.3.2 All Electric Vehicles (AEVs) 6
1.3.3 Hybrid Electric Vehicles (HEVs) 7
1.3.4 Fuel Cell Vehicles (FCVs) 10
1.4 Hybridization Rate 10
1.4.1 Micro HEVs 11
1.4.2 Mild HEVs 11
1.4.3 Full or Power-Assist HEVs 12
1.4.4 Plug-In HEVs (or Range-Extended Hybrids) 12
1.5 Vehicle Architecture 13
1.5.1 Series HEVs 14
1.5.2 Parallel HEVs 14
1.5.3 Parallel/Series HEVs 14
1.5.4 Complex HEVs 15
1.6 Energy Storage System 15
1.6.1 Batteries 15
1.6.2 Ultracapacitors (UCs) 17
1.6.3 Flywheels 18
1.6.4 Fuel Cells 18
1.7 Grid Connection 20
1.7.1 Charger Power Levels and Infrastructure 20
1.7.2 Conductive Charging 21
1.7.3 Inductive Charging 22
1.7.4 Smart Grid and V2G/V2H/V2X Systems 23
1.8 Sustainability, Environmental Impact and Cost Aspects 27
1.9 Vehicle Thermal Management 28
1.9.1 Radiator Circuit 29
1.9.2 Power Electronics Circuit 29
1.9.3 Drive Unit Circuit 30
1.9.4 A/C Circuit 30
1.10 Vehicle Drive Patterns and Cycles 33
1.11 Case Study 34
1.11.1 Introduction 34
1.11.2 Research Programs 34
1.11.3 Government Incentives 35
1.11.3.1 Tax Benefits 35
1.11.3.2 EV Supply Equipment and Charging Infrastructure 36
1.11.3.3 EV Developments in the Turkish Market 36
1.11.3.4 HEVs on the Road 38
1.11.3.5 Turkey's Standing in the World 39
1.11.3.6 SWOT Analysis 43
1.12 Concluding Remarks 43
Nomenclature 44
Study Questions/Problems 44
References 45
2 Electric Vehicle Battery Technologies 49
2.1 Introduction 49
2.2 Current Battery Technologies 49
2.2.1 Lead Acid Batteries 51
2.2.2 Nickel Cadmium Batteries 52
2.2.3 Nickel Metal Hydride Batteries 52
2.2.4 Lithium-Ion Batteries 54
2.3 Battery Technologies under Development 57
2.3.1 Zinc-Air Batteries 59
2.3.2 Sodium-Air Batteries 60
2.3.3 Lithium-Sulfur Batteries 60
2.3.4 Aluminum-Air Batteries 61
2.3.5 Lithium-Air Batteries 61
2.4 Battery Characteristics 63
2.4.1 Battery Cost 63
2.4.2 Battery Environmental Impact 64
2.4.3 Battery Material Resources 68
2.4.4 Impact of Various Loads and Environmental Conditions 70
2.5 Battery Management Systems 72
2.5.1 Data Acquisition 75
2.5.2 Battery States Estimation 76
2.5.2.1 SOC Estimation Algorithm 76
2.5.2.2 SOH Estimation Algorithms 78
2.5.2.3 SOF Estimation Algorithms 78
2.5.3 Charge Equalization 78
2.5.3.1 Hierarchical Architecture Platform/Communication 80
2.5.3.2 Cell Equalization 80
2.5.4 Safety Management/Fault Diagnosis 81
2.5.5 Thermal Management 83
2.6 Battery Manufacturing and Testing Processes 83
2.6.1 Manufacturing Processes 83
2.6.2 Testing Processes 85
2.7 Concluding Remarks 88
Nomenclature 88
Study Questions/Problems 88
References 89
3 Phase Change Materials for Passive TMSs 93
3.1 Introduction 93
3.2 Basic Properties and Types of PCMs 93
3.2.1 Organic PCMs 100
3.2.1.1 Paraffins 101
3.2.1.2 Non-Paraffins 101
3.2.2 Inorganic PCMs 102
3.2.2.1 Salt Hydrates 102
3.2.2.2 Metals 103
3.2.3 Eutectics 104
3.3 Measurement of Thermal Properties of PCMs 104
3.4 Heat Transfer Enhancements 107
3.5 Cost and Environmental Impact of Phase Change Materials 110
3.6 Applications of PCMs 111
3.7 Case Study I: Heat Exchanger Design and Optimization Model for EV
Batteries using PCMs 114
3.7.1 System Description and Parameters 114
3.7.1.1 Simplified System Diagram 114
3.7.1.2 PCM Selection For the Application 115
3.7.1.3 Nano-Particles and PCM Mixture For Thermal Conductivity Enhancement
116
3.7.1.4 Thermal Modeling of Heat Exchanger 117
3.7.2 Design and Optimization of the Latent Heat Thermal Energy Storage
System 119
3.7.2.1 Objective Functions, Design Parameters and Constraints 119
3.7.2.2 Effective Properties of the PCM and Nanotubes 119
3.7.2.3 Combined Condition 121
3.7.2.4 Model Description 121
3.7.2.5 Sensitivity Analysis 121
3.7.2.6 Helical Tube Heat Exchanger 127
3.8 Case Study 2: Melting and Solidification of Paraffin in a Spherical
Shell from Forced External Convection 128
3.8.1 Validation of Numerical Model and Model Independence Testing 130
3.8.2 Performance Criteria 133
3.8.3 Results and Discussion 135
3.9 Concluding Remarks 141
Nomenclature 141
Study Questions/Problems 143
References 143
4 Simulation and Experimental Investigation of Battery TMSs 145
4.1 Introduction 145
4.2 Numerical Model Development for Cell and Submodules 146
4.2.1 Physical Model for Numerical Study of PCM Application 146
4.2.2 Initial and Boundary Conditions and Model Assumptions 147
4.2.3 Material Properties and Model Input Parameters 148
4.2.3.1 Li-ion Cell Properties 148
4.2.3.2 Phase Change Material (PCM) 149
4.2.3.3 Foam Material 153
4.2.3.4 Cooling Plate 153
4.2.4 Governing Equations and Constitutive Laws 153
4.2.5 Model Development for Simulations 155
4.2.5.1 Mesh Generation 156
4.2.5.2 Discretization Scheme 156
4.2.5.3 Under-Relaxation Scheme 157
4.2.5.4 Convergence Criteria 157
4.3 Cell and Module Level Experimentation Set Up and Procedure 157
4.3.1 Instrumentation of the Cell and Submodule 158
4.3.2 Instrumentation of the Heat Exchanger 159
4.3.3 Preparation of PCMs and Nano-Particle Mixtures 161
4.3.4 Improving Surface Arrangements of Particles 163
4.3.5 Setting up the Test Bench 164
4.4 Vehicle Level Experimentation Set Up and Procedure 166
4.4.1 Setting Up the Data Acquisition Hardware 166
4.4.2 Setting Up the Data Acquisition Software 168
4.5 Illustrative Example: Simulations and Experimentations on the Liquid
Battery Thermal Management System Using PCMs 172
4.5.1 Simulations and Experimentations on Cell Level 174
4.5.1.1 Grid Independence Tests 175
4.5.1.2 Effect of Contact Resistance on Heat Transfer Rate 176
4.5.1.3 Simulation Results For Li-ion cell Without PCM in Steady State and
Transient Response 177
4.5.1.4 Simulation Results For PCM in Steady-State and Transient Conditions
180
4.5.1.5 Cooling Effectiveness In the Cell 185
4.5.2 Simulation and Experimentations Between the Cells in the Submodule
186
4.5.2.1 Effective Properties of Soaked Foam 187
4.5.2.2 Steady State Response of the Cells in the Submodule 188
4.5.2.3 Transient Response of the Submodule 189
4.5.2.4 Submodule with Dry and Wet Foam at Higher Heat Generation Rates 191
4.5.3 Simulations and Experimentations on a Submodule Level 192
4.5.3.1 Steady-State Response of the Submodule Without PCMs 193
4.5.3.2 Steady-State Results of the Submodule with PCMs 196
4.5.3.3 Transient Response of the Submodule 197
4.5.3.4 Quasi-Steady Response of the Submodule 198
4.5.3.5 Model Validation 201
4.5.4 Optical Observations 203
4.5.4.1 Thermal Conductivity Enhancement by Nanoparticles 203
4.5.4.2 Data For the Case of Pure PCM (99% Purity) 208
4.5.4.3 Optical Microscopy Analysis of the PCM and Nanoparticle Mixture 208
4.5.5 Vehicle Level Experimentations 214
4.5.5.1 Test Bench Experimentations 215
4.5.5.2 Test Vehicle Experimentations 218
4.5.6 Case Study Conclusions 225
4.6 Concluding Remarks 226
Nomenclature 227
Study Questions/Problems 228
References 229
5 Energy and Exergy Analyses of Battery TMSs 231
5.1 Introduction 231
5.2 TMS Comparison 232
5.2.1 Thermodynamic Analysis 233
5.2.2 Battery Heat Transfer Analysis 237
5.2.2.1 Battery Temperature Distribution 237
5.2.2.2 Battery Temperature Uniformity 239
5.3 Modeling of Major TMS Components 240
5.3.1 Compressor 242
5.3.2 Heat Exchangers 243
5.3.3 Thermal Expansion Valve (TXV) 245
5.3.4 Electric Battery 246
5.3.5 System Parameters 246
5.4 Energy and Exergy Analyses 247
5.4.1 Conventional Analysis 247
5.4.2 Enhanced Exergy Analysis 253
5.5 Illustrative Example: Liquid Battery Thermal Management Systems 256
5.6 Case Study: Transcritical CO2-Based Electric Vehicle BTMS 269
5.6.1 Introduction 270
5.6.2 System Development 272
5.6.3 Thermodynamic Analysis 275
5.6.4 Results and Discussion 276
5.6.5 Case Study Conclusions 281
5.7 Concluding Remarks 282
Nomenclature 282
Study Questions/Problems 284
References 285
6 Cost, Environmental Impact and Multi-Objective Optimization of Battery
TMSs 287
6.1 Introduction 287
6.2 Exergoeconomic Analysis 288
6.2.1 Cost Balance Equations 288
6.2.2 Purchase Equipment Cost Correlations 290
6.2.3 Cost Accounting 291
6.2.4 Exergoeconomic Evaluation 293
6.2.5 Enhanced Exergoeconomic Analysis 293
6.2.6 Enviroeconomic (Environmental Cost) Analysis 294
6.3 Exergoenvironmental Analysis 295
6.3.1 Environmental Impact Balance Equations 295
6.3.2 Environmental Impact Correlations 296
6.3.3 LCA of the Electric Battery 297
6.3.4 Environmental Impact Accounting 299
6.3.5 Exergoenvironmental Evaluation 300
6.4 Optimization Methodology 301
6.4.1 Objective Functions 301
6.4.2 Decision Variables and Constraints 302
6.4.3 Genetic Algorithm 303
6.5 Illustrative Example: Liquid Battery Thermal Management Systems 306
6.5.1 Conventional Exergoeconomic Analysis Results 307
6.5.2 Enhanced Exergoeconomic Analysis Results 309
6.5.3 Battery Environmental Impact Assessment 314
6.5.4 Exergoenvironmental Analysis Results 316
6.5.5 Multi-Objective Optimization Results 319
6.5.5.1 Case Study Conclusions 324
6.6 Concluding Remarks 325
Nomenclature 326
Study Questions/Problems 327
References 328
7 Case Studies 329
7.1 Introduction 329
7.2 Case Study 1: Economic and Environmental Comparison of Conventional,
Hybrid, Electric and Hydrogen Fuel Cell Vehicles 329
7.2.1 Introduction 329
7.2.2 Analysis 330
7.2.2.1 Economic Criteria 330
7.2.2.2 Environmental Impact Criteria 331
7.2.2.3 Normalization and General Indicator 334
7.2.3 Results and Discussion 335
7.2.4 Closing Remarks 338
7.3 Case Study 2: Experimental and Theoretical Investigation of Temperature
Distributions in a Prismatic Lithium-Ion Battery 339
7.3.1 Introduction 339
7.3.2 System Description 340
7.3.3 Analysis 341
7.3.3.1 Temperature Measurements 341
7.3.3.2 Heat Generation 342
7.3.4 Results and Discussion 342
7.3.4.1 Battery Discharge Voltage Profile 342
7.3.4.2 Battery Internal Resistance Profile 343
7.3.4.3 Effect of Discharge Rates and Operating Temperature on Battery
Performance 344
7.3.4.4 Model Development and Validation 344
7.3.5 Closing Remarks 350
7.4 Case Study 3: Thermal Management Solutions for Electric Vehicle
Lithium-Ion Batteries based on Vehicle Charge and Discharge Cycles 351
7.4.1 Introduction 351
7.4.2 System Description 351
7.4.3 Analysis 352
7.4.3.1 Design of Hybrid Test Stand For Thermal Management 352
7.4.3.2 Battery Cooling System 356
7.4.3.3 Sensors and Flow Meter 356
7.4.3.4 Compression Rig 356
7.4.3.5 Battery 359
7.4.3.6 Thermal Management System - Experimental Plan and Procedure 359
7.4.3.7 Data Analysis Method 361
7.4.4 Results and Discussion 364
7.4.4.1 Battery Surface Temperature Profile 365
7.4.4.2 Average Surface Temperature of Battery 366
7.4.4.3 Average Heat Flux 368
7.4.4.4 Peak Heat Flux 369
7.4.4.5 Heat Generation Rate 369
7.4.4.6 Total Heat Generated 373
7.4.4.7 Effect of Discharge Rate and Operating Temperature on Discharge
Capacity 373
7.4.5 Closing Remarks 374
7.5 Case Study 4: Heat Transfer and Thermal Management of Electric Vehicle
Batteries with Phase Change Materials 375
7.5.1 Introduction 375
7.5.2 System Description 375
7.5.3 Analysis 378
7.5.3.1 Exergy Analysis 378
7.5.3.2 Numerical Study 379
7.5.4 Results and Discussion 379
7.5.4.1 CFD Analysis 379
7.5.4.2 Part II: Exergy Analysis 385
7.5.5 Closing Remarks 388
7.6 Case Study 5: Experimental and Theoretical Investigation of Novel Phase
Change Materials For Thermal Applications 389
7.6.1 Introduction 389
7.6.2 System Description 390
7.6.2.1 Experimental Layouts 393
7.6.2.2 Challenges 397
7.6.3 Analysis 397
7.6.3.1 Analysis of Constant Temperature Bath 402
7.6.3.2 Analysis of Hot Air Duct 402
7.6.3.3 Analysis of Battery Cooling 403
7.6.3.4 Energy and Exergy Analyses 403
7.6.4 Results and Discussion 407
7.6.4.1 Test Results of Base PCM 408
7.6.4.2 Results of Battery Cooling Tests 410
7.6.4.3 Results of Energy and Exergy Analyses on Base Clathrate 412
7.6.4.4 Results of Thermoeconomic Analysis 415
7.6.5 Closing Remarks 417
Nomenclature 419
References 423
8 Alternative Dimensions and Future Expectations 425
8.1 Introduction 425
8.2 Outstanding Challenges 425
8.2.1 Consumer Perceptions 425
8.2.2 Socio-Technical Factors 427
8.2.3 Self-Reinforcing Processes 429
8.3 Emerging EV Technologies and Trends 431
8.3.1 Active Roads 431
8.3.2 V2X and Smart Grid 432
8.3.3 Battery Swapping 433
8.3.4 Battery Second Use 435
8.4 Future BTM Technologies 437
8.4.1 Thermoelectric Materials 437
8.4.2 Magnetic Cooling 438
8.4.3 Piezoelectric Fans/Dual Cooling Jets 438
8.4.4 Other Potential BTMSs 440
8.5 Concluding Remarks 441
Nomenclature 441
Study Questions/Problems 441
References 442
Index 445