Doktorarbeit / Dissertation aus dem Jahr 2015 im Fachbereich Elektrotechnik, Note: 1,0, Technische Universität Dresden (Institut für Aufbau- und Verbindungstechnik der Elektronik), Sprache: Deutsch, Abstract: Für den Aufbau von 3D-integrierten Mikrosystemen gilt es bestehende Prozessabläufe zu adaptieren und neue Teilprozesse zu integrieren. Dementsprechend muss zunächst Wissen über die Prozessführung und das Materialverhalten gesammelt werden. Die vorliegende Arbeit konzentriert sich dabei auf das Annealingverhalten von Through-Silicon-Via-Strukturen (TSVs). Im Fokus der Untersuchungen stehen vor allem thermo-mechanische Spannungen, welche sich bei diesem Fertigungsschritt ausbilden. Vom Materialverhalten des Kupfers ausgehend, wird ein hypothetisches Ablaufmodell zur Spannungsentwicklung während des Annealing entwickelt. Experimentalreihen werden von der TSV-Prozessführung abgeleitet, um die getroffenen Annahmen zu überprüfen. In diesem Zusammenhang dienen die Charakterisierung von Testchipkrümmung sowie der Kupferprotrusion vor und nach dem Annealing zur Überprüfung der getroffenen Annahmen und weisen ein zeit- und temperaturabhängiges Verhalten auf. EBSD-Messungen zeigen, dass diese Beobachtungen maßgeblich auf die Umstrukturierung der Kupfermikrostruktur zurückzuführen sind. Ausgehend vom Ablaufmodell und von der experimentellen Charakterisierung können wichtige Randbedingungen für Berechnungen erkannt und festgelegt werden. So wird abschließend ein FE-Modell zur Simulation der thermo-mechanischen Spannungen nach dem Annealing vorgestellt. Die Simulationsergebnisse werden durch µ-Raman-Spektroskopie-Messungen validiert. Zusammengefasst liefert diese Arbeit nicht nur wichtige materialtechnische Erkenntnisse über den Ablauf des TSV-Annealing, sondern stellt zusätzlich eine Berechnungsmethodik vor, welche als Werkzeug für die Prozessoptimierung genutzt werden kann.