165,95 €
165,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
83 °P sammeln
165,95 €
165,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
83 °P sammeln
Als Download kaufen
165,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
83 °P sammeln
Jetzt verschenken
165,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
83 °P sammeln
  • Format: PDF

There is increasing recognition that low-cost, high capacity processes for the conversion of biomass into fuels and chemicals are essential for expanding the utilization of carbon neutral processes, reducing dependency on fossil fuel resources, and increasing rural income. While much attention has focused on the use of biomass to produce ethanol via fermentation, high capacity processes are also required for the production of hydrocarbon fuels and chemicals from lignocellulosic biomass. In this context, this book provides an up-to-date overview of the thermochemical methods available for…mehr

Produktbeschreibung
There is increasing recognition that low-cost, high capacity processes for the conversion of biomass into fuels and chemicals are essential for expanding the utilization of carbon neutral processes, reducing dependency on fossil fuel resources, and increasing rural income. While much attention has focused on the use of biomass to produce ethanol via fermentation, high capacity processes are also required for the production of hydrocarbon fuels and chemicals from lignocellulosic biomass. In this context, this book provides an up-to-date overview of the thermochemical methods available for biomass conversion to liquid fuels and chemicals. In addition to traditional conversion technologies such as fast pyrolysis, new developments are considered, including catalytic routes for the production of liquid fuels from carbohydrates and the use of ionic liquids for lignocellulose utilization. The individual chapters, written by experts in the field, provide an introduction to each topic, as well as describing recent research developments.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.

Autorenporträt
Mark Crocker is an Associate Director at the University of Kentucky Center for Applied Energy Research, where he leads the Biofuels and Environmental Catalysis research program. He has four years experience in the field of biomass upgrading research and recently organized and taught a professional short course concerning this subject. He has also worked in industry and previously held posts as an R&D Manager for the Automotive Catalyst Division of OMG Corp (formerly Degussa) and as a Senior Research Chemist at the Shell Research and Technology Centre in Amsterdam. Mark Crocker holds a BSc in Chemistry and PhD in Inorganic Chemistry from the University of Bristol. He is a member of several scholarly societies and has contributed to numerous journal articles and conferences.