48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
Als Download kaufen
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
Jetzt verschenken
48,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
  • Format: PDF

This book introduces an intuitive, self-sustained oscillator model and applies it to describe some of the most critical performance metrics of LC oscillators, such as phase noise, entrainment, and pulling. It also covers the related topics of magnetic coupling and inductor design. The author emphasizes the basic principles and illuminates them with approximate calculations, adopting a design-oriented approach that imparts intuition and complements simulations. This book constitutes a novel and fresh perspective on the subject and can be helpful to electrical engineering students and…mehr

Produktbeschreibung
This book introduces an intuitive, self-sustained oscillator model and applies it to describe some of the most critical performance metrics of LC oscillators, such as phase noise, entrainment, and pulling. It also covers the related topics of magnetic coupling and inductor design. The author emphasizes the basic principles and illuminates them with approximate calculations, adopting a design-oriented approach that imparts intuition and complements simulations. This book constitutes a novel and fresh perspective on the subject and can be helpful to electrical engineering students and practicing engineers. It also serves as a bridge between the mathematical treatises of the subject and the more practical circuit-oriented approaches.


  • Introduces the Van der Pol self-sustained oscillator model and explains its use to describe practical LC oscillators.
  • Discusses the fundamentals of oscillator noise using the complementary approaches of dissipation and fluctuation.
  • Models the oscillator as a phase point moving along its limit cycle and introduces the Phase Dynamics Equation.
  • Explains the noise to phase noise conversion as a two-step process and delves into computing phase noise due to tank noise, transconductor thermal and flicker noise, supply, and bias noise.
  • Highlights the vital role of the oscillator's common-mode behavior in converting low-frequency noise to phase noise.
  • Applies the Phase Dynamics Equation to describe oscillator entrainment and pulling.
  • Discusses methods to reduce magnetic coupling and includes a self-contained introduction to the design of integrated inductors.





Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Konstantinos Manetakis received a Ph.D. in Analog IC Design from the Imperial College of Science, Technology and Medicine, London, UK, in 1998. From 1998 to 2020, he held various positions with Maxim Integrated Products in Sunnyvale, CA, USA; Qualcomm CDMA Technologies in San Diego, CA, USA; Silicon Labs in Caen, France; Cambridge Silicon Radio in Cambridge, UK, and Sophia-Antipolis France; Marvell Technologies in Etoy, Switzerland, and GlobalFoundries in Rolle Switzerland. Since 2020 he has been with CSEM in Neuchatel, Switzerland, as a RF System Architect working on low-power wireless transceivers for connectivity applications. His interests include Analog, RF, and mm-wave integrated circuits and systems