Victor V. Kotlyar, Alexey A. Kovalev, Anton G. Nalimov
Topological Charge of Optical Vortices (eBook, PDF)
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
48,95 €
Als Download kaufen
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
24 °P sammeln
Victor V. Kotlyar, Alexey A. Kovalev, Anton G. Nalimov
Topological Charge of Optical Vortices (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book is devoted to the consideration of unusual laser beams - vortex or singular beams. It contains many numerical examples, which clearly show how the phase of optical vortices changes during propagation in free space, and the topological charge is preserved.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 41.94MB
Andere Kunden interessierten sich auch für
- Victor V. KotlyarTopological Charge of Optical Vortices (eBook, ePUB)48,95 €
- Raymond K. KostukHolography (eBook, PDF)52,95 €
- Duwayne R. AndersonTroubleshooting Optical Fiber Networks (eBook, PDF)58,95 €
- Takayoshi KobayashiUltrashort Pulse Lasers and Ultrafast Phenomena (eBook, PDF)68,95 €
- Datacenter Connectivity Technologies (eBook, PDF)86,95 €
- Fiber Lasers (eBook, PDF)54,95 €
- WDM Technologies: Active Optical Components (eBook, PDF)91,95 €
-
-
-
This book is devoted to the consideration of unusual laser beams - vortex or singular beams. It contains many numerical examples, which clearly show how the phase of optical vortices changes during propagation in free space, and the topological charge is preserved.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 320
- Erscheinungstermin: 30. Dezember 2022
- Englisch
- ISBN-13: 9781000788396
- Artikelnr.: 66340517
- Verlag: Taylor & Francis
- Seitenzahl: 320
- Erscheinungstermin: 30. Dezember 2022
- Englisch
- ISBN-13: 9781000788396
- Artikelnr.: 66340517
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Victor V. Kotlyar is Head of the Laboratory at Image Processing Systems Institute of the Russian Academy of Science, a branch of the Federal Scientific Research Center "Crystallography and Photonics", and Professor of Computer Science at Samara National Research University, Russia. He earned his MS, PhD, and DrSc degrees in Physics and Mathematics from Samara State University (1979), Saratov State University (1988), and Moscow Central Design Institute of Unique Instrumentation, the Russian Academy of Sciences (1992). He is a SPIE- and OSA-member. He is coauthor of 400 scientific papers, 7 books, and 7 inventions. His current interests are diffractive optics, gradient optics, nanophotonics, and optical vortices.
Alexey A. Kovalev graduated in 2002 from Samara National Research University, Russia, majoring in Applied Mathematics. He earned his PhD in Physics and Maths in 2012. He is senior researcher of Laser Measurements at the Image Processing Systems Institute of the Russian Academy of Science, a branch of the Federal Scientific Research Center "Crystallography and Photonics". He is a co-author of more than 270 scientific papers. His research interests are mathematical diffraction theory, photonic crystal devices, and optical vortices.
Anton G. Nalimov graduated from Samara State Aerospace University, Russia, in February 2003. He entered postgraduate study in 2003 with a focus on the specialty 05.13.18 "Mathematical Modeling and Program Complexes". He finished it in 2006 with the specialty 01.04.05 "Optics". Nalimov works in the Technical Cybernetics department at Samara National Research University as an associate professor, and also works as a scientist in the Image Processing Systems Institute of the Russian Academy of Science, a branch of the Federal Scientific Research Center "Crystallography and Photonics" in Samara. He is a PhD candidate in Physics and Mathematics, co-author of 200 papers and 3 inventions.
Alexey A. Kovalev graduated in 2002 from Samara National Research University, Russia, majoring in Applied Mathematics. He earned his PhD in Physics and Maths in 2012. He is senior researcher of Laser Measurements at the Image Processing Systems Institute of the Russian Academy of Science, a branch of the Federal Scientific Research Center "Crystallography and Photonics". He is a co-author of more than 270 scientific papers. His research interests are mathematical diffraction theory, photonic crystal devices, and optical vortices.
Anton G. Nalimov graduated from Samara State Aerospace University, Russia, in February 2003. He entered postgraduate study in 2003 with a focus on the specialty 05.13.18 "Mathematical Modeling and Program Complexes". He finished it in 2006 with the specialty 01.04.05 "Optics". Nalimov works in the Technical Cybernetics department at Samara National Research University as an associate professor, and also works as a scientist in the Image Processing Systems Institute of the Russian Academy of Science, a branch of the Federal Scientific Research Center "Crystallography and Photonics" in Samara. He is a PhD candidate in Physics and Mathematics, co-author of 200 papers and 3 inventions.
1. Topological charge of superposition of vortices. Conservation of topological charge. 2. Evolution of an optical vortex with an initial fractional topological charge. 3. Topological charge superposition of only two Laguerre-Gaussian or Bessel-Gaussian beams with different parameters. 4. Optical vortex beams with an infinite topological charge. 5. Transformation of an edge dislocation of a wavefront into an optical vortex. 6. Fourier-invariant and structurally stable optical vortex beams. 7. Topological charge of polarization singularities. 8. Conclusion.
1. Topological charge of superposition of vortices. Conservation of
topological charge. 2. Evolution of an optical vortex with an initial
fractional topological charge. 3. Topological charge superposition of only
two Laguerre-Gaussian or Bessel-Gaussian beams with different parameters.
4. Optical vortex beams with an infinite topological charge. 5.
Transformation of an edge dislocation of a wavefront into an optical
vortex. 6. Fourier-invariant and structurally stable optical vortex beams.
7. Topological charge of polarization singularities. 8. Conclusion.
topological charge. 2. Evolution of an optical vortex with an initial
fractional topological charge. 3. Topological charge superposition of only
two Laguerre-Gaussian or Bessel-Gaussian beams with different parameters.
4. Optical vortex beams with an infinite topological charge. 5.
Transformation of an edge dislocation of a wavefront into an optical
vortex. 6. Fourier-invariant and structurally stable optical vortex beams.
7. Topological charge of polarization singularities. 8. Conclusion.
1. Topological charge of superposition of vortices. Conservation of topological charge. 2. Evolution of an optical vortex with an initial fractional topological charge. 3. Topological charge superposition of only two Laguerre-Gaussian or Bessel-Gaussian beams with different parameters. 4. Optical vortex beams with an infinite topological charge. 5. Transformation of an edge dislocation of a wavefront into an optical vortex. 6. Fourier-invariant and structurally stable optical vortex beams. 7. Topological charge of polarization singularities. 8. Conclusion.
1. Topological charge of superposition of vortices. Conservation of
topological charge. 2. Evolution of an optical vortex with an initial
fractional topological charge. 3. Topological charge superposition of only
two Laguerre-Gaussian or Bessel-Gaussian beams with different parameters.
4. Optical vortex beams with an infinite topological charge. 5.
Transformation of an edge dislocation of a wavefront into an optical
vortex. 6. Fourier-invariant and structurally stable optical vortex beams.
7. Topological charge of polarization singularities. 8. Conclusion.
topological charge. 2. Evolution of an optical vortex with an initial
fractional topological charge. 3. Topological charge superposition of only
two Laguerre-Gaussian or Bessel-Gaussian beams with different parameters.
4. Optical vortex beams with an infinite topological charge. 5.
Transformation of an edge dislocation of a wavefront into an optical
vortex. 6. Fourier-invariant and structurally stable optical vortex beams.
7. Topological charge of polarization singularities. 8. Conclusion.