Niel Shell
Topological Fields and Near Valuations (eBook, PDF)
246,95 €
246,95 €
inkl. MwSt.
Sofort per Download lieferbar
123 °P sammeln
246,95 €
Als Download kaufen
246,95 €
inkl. MwSt.
Sofort per Download lieferbar
123 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
246,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
123 °P sammeln
Niel Shell
Topological Fields and Near Valuations (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Part I (eleven chapters) of this text for graduate students provides a Survey of topological fields, while Part II (five chapters) provides a relatively more idiosyncratic account of valuation theory.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 5.87MB
Andere Kunden interessierten sich auch für
- Spectral and Scattering Theory (eBook, PDF)165,95 €
- Esteban Tlelo-CuautleOptimization of Integer/Fractional Order Chaotic Systems by Metaheuristics and their Electronic Realization (eBook, PDF)58,95 €
- Neural Network Analysis, Architectures and Applications (eBook, PDF)51,95 €
- Mathematics for Large Scale Computing (eBook, PDF)246,95 €
- Valery Ochkov25 Problems for STEM Education (eBook, PDF)41,95 €
- Claude BrezinskiBiorthogonality and its Applications to Numerical Analysis (eBook, PDF)226,95 €
- Frederic MagoulesCloud Computing (eBook, PDF)64,95 €
-
-
-
Part I (eleven chapters) of this text for graduate students provides a Survey of topological fields, while Part II (five chapters) provides a relatively more idiosyncratic account of valuation theory.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 248
- Erscheinungstermin: 23. Juni 2021
- Englisch
- ISBN-13: 9781000444797
- Artikelnr.: 61915697
- Verlag: Taylor & Francis
- Seitenzahl: 248
- Erscheinungstermin: 23. Juni 2021
- Englisch
- ISBN-13: 9781000444797
- Artikelnr.: 61915697
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Niel Shell (City University of New York)
PART I: SURVEY OF TOPOLOGICAL FIELDS 1 INTRODUCTION 1.1 Neighborhood Bases
at Zero 1.2 Alternate Axiomatizations 1.3 Basic Properties 2 VALUATIONS AND
OTHER EXAMPLES 2.1 Prevaluations 2.2 Examples of Valued Fields 3 THE
LATTICE OF RING TOPOLOGIES 3.1 Lattices of Topologies . . . 3.2 Weakening
Ring Topologies 3.3 Minimal Topologies 3.4 Independence 4 LOCALLY BOUNDED
FIELDS 4.1 Bounded Sets 4.2 Locally Bounded Rings 4.3 Preorders 4.4
Preorders and Topologies 4.5 Lattice Results 5 NORMED FIELDS 5.1 Norms 5.2
Nilpotence and Normability 6 COMPLETENESS 6.1 Completions of Rings 6.2
Completions of Fields 7 EMBEDDING AND EXTENSION 7.1 The Problem 7.2 The
Product Topology Extension 8 EXISTENCE OF FIELD TOPOLOGIES 9 CONNECTED
FIELDS 10 DISCONNECTED FIELDS 10.1 Extremally Disconnected Fields 10.2
Ultraregular Fields . 11 LINEAR FIELDS PART 11: VALUED FIELDS 12 ABSOLUTE
VALUES 12.1 Nonarchimedean Absolute Values 12.2 Absolute Values on PID's
12.3 Equivalent Absolute Values 12.4 Equivalent Valuations 12.5 Powers of
Absolute Values 13 PLACES 14 VECTOR SPACES AND STRICTLY MINIMAL FIELDS
.14.1 Strictly Minimal Fields .14.2 Completeness and Norms 14.3 Normed
Algebras 15 EXTENSIONS OF VALUATIONS 15.1 Existence of Extensions 15.2
Archimedean Absolute Values 15.3 Complete and Algebraically Closed Fields .
16 CHARACTERIZATIONS 16.1 Topologies Induced by Absolute Values 16.2
Archimedean Valuations 16.3 Type V Fields 16.4 Addiator Sequences 16.5
Topologies Induced by Valuations
at Zero 1.2 Alternate Axiomatizations 1.3 Basic Properties 2 VALUATIONS AND
OTHER EXAMPLES 2.1 Prevaluations 2.2 Examples of Valued Fields 3 THE
LATTICE OF RING TOPOLOGIES 3.1 Lattices of Topologies . . . 3.2 Weakening
Ring Topologies 3.3 Minimal Topologies 3.4 Independence 4 LOCALLY BOUNDED
FIELDS 4.1 Bounded Sets 4.2 Locally Bounded Rings 4.3 Preorders 4.4
Preorders and Topologies 4.5 Lattice Results 5 NORMED FIELDS 5.1 Norms 5.2
Nilpotence and Normability 6 COMPLETENESS 6.1 Completions of Rings 6.2
Completions of Fields 7 EMBEDDING AND EXTENSION 7.1 The Problem 7.2 The
Product Topology Extension 8 EXISTENCE OF FIELD TOPOLOGIES 9 CONNECTED
FIELDS 10 DISCONNECTED FIELDS 10.1 Extremally Disconnected Fields 10.2
Ultraregular Fields . 11 LINEAR FIELDS PART 11: VALUED FIELDS 12 ABSOLUTE
VALUES 12.1 Nonarchimedean Absolute Values 12.2 Absolute Values on PID's
12.3 Equivalent Absolute Values 12.4 Equivalent Valuations 12.5 Powers of
Absolute Values 13 PLACES 14 VECTOR SPACES AND STRICTLY MINIMAL FIELDS
.14.1 Strictly Minimal Fields .14.2 Completeness and Norms 14.3 Normed
Algebras 15 EXTENSIONS OF VALUATIONS 15.1 Existence of Extensions 15.2
Archimedean Absolute Values 15.3 Complete and Algebraically Closed Fields .
16 CHARACTERIZATIONS 16.1 Topologies Induced by Absolute Values 16.2
Archimedean Valuations 16.3 Type V Fields 16.4 Addiator Sequences 16.5
Topologies Induced by Valuations
PART I: SURVEY OF TOPOLOGICAL FIELDS 1 INTRODUCTION 1.1 Neighborhood Bases
at Zero 1.2 Alternate Axiomatizations 1.3 Basic Properties 2 VALUATIONS AND
OTHER EXAMPLES 2.1 Prevaluations 2.2 Examples of Valued Fields 3 THE
LATTICE OF RING TOPOLOGIES 3.1 Lattices of Topologies . . . 3.2 Weakening
Ring Topologies 3.3 Minimal Topologies 3.4 Independence 4 LOCALLY BOUNDED
FIELDS 4.1 Bounded Sets 4.2 Locally Bounded Rings 4.3 Preorders 4.4
Preorders and Topologies 4.5 Lattice Results 5 NORMED FIELDS 5.1 Norms 5.2
Nilpotence and Normability 6 COMPLETENESS 6.1 Completions of Rings 6.2
Completions of Fields 7 EMBEDDING AND EXTENSION 7.1 The Problem 7.2 The
Product Topology Extension 8 EXISTENCE OF FIELD TOPOLOGIES 9 CONNECTED
FIELDS 10 DISCONNECTED FIELDS 10.1 Extremally Disconnected Fields 10.2
Ultraregular Fields . 11 LINEAR FIELDS PART 11: VALUED FIELDS 12 ABSOLUTE
VALUES 12.1 Nonarchimedean Absolute Values 12.2 Absolute Values on PID's
12.3 Equivalent Absolute Values 12.4 Equivalent Valuations 12.5 Powers of
Absolute Values 13 PLACES 14 VECTOR SPACES AND STRICTLY MINIMAL FIELDS
.14.1 Strictly Minimal Fields .14.2 Completeness and Norms 14.3 Normed
Algebras 15 EXTENSIONS OF VALUATIONS 15.1 Existence of Extensions 15.2
Archimedean Absolute Values 15.3 Complete and Algebraically Closed Fields .
16 CHARACTERIZATIONS 16.1 Topologies Induced by Absolute Values 16.2
Archimedean Valuations 16.3 Type V Fields 16.4 Addiator Sequences 16.5
Topologies Induced by Valuations
at Zero 1.2 Alternate Axiomatizations 1.3 Basic Properties 2 VALUATIONS AND
OTHER EXAMPLES 2.1 Prevaluations 2.2 Examples of Valued Fields 3 THE
LATTICE OF RING TOPOLOGIES 3.1 Lattices of Topologies . . . 3.2 Weakening
Ring Topologies 3.3 Minimal Topologies 3.4 Independence 4 LOCALLY BOUNDED
FIELDS 4.1 Bounded Sets 4.2 Locally Bounded Rings 4.3 Preorders 4.4
Preorders and Topologies 4.5 Lattice Results 5 NORMED FIELDS 5.1 Norms 5.2
Nilpotence and Normability 6 COMPLETENESS 6.1 Completions of Rings 6.2
Completions of Fields 7 EMBEDDING AND EXTENSION 7.1 The Problem 7.2 The
Product Topology Extension 8 EXISTENCE OF FIELD TOPOLOGIES 9 CONNECTED
FIELDS 10 DISCONNECTED FIELDS 10.1 Extremally Disconnected Fields 10.2
Ultraregular Fields . 11 LINEAR FIELDS PART 11: VALUED FIELDS 12 ABSOLUTE
VALUES 12.1 Nonarchimedean Absolute Values 12.2 Absolute Values on PID's
12.3 Equivalent Absolute Values 12.4 Equivalent Valuations 12.5 Powers of
Absolute Values 13 PLACES 14 VECTOR SPACES AND STRICTLY MINIMAL FIELDS
.14.1 Strictly Minimal Fields .14.2 Completeness and Norms 14.3 Normed
Algebras 15 EXTENSIONS OF VALUATIONS 15.1 Existence of Extensions 15.2
Archimedean Absolute Values 15.3 Complete and Algebraically Closed Fields .
16 CHARACTERIZATIONS 16.1 Topologies Induced by Absolute Values 16.2
Archimedean Valuations 16.3 Type V Fields 16.4 Addiator Sequences 16.5
Topologies Induced by Valuations