Friedrich Hirzebruch
Topological Methods in Algebraic Geometry (eBook, PDF)
Übersetzer: Schwarzenberger, R. L. E.
65,95 €
65,95 €
inkl. MwSt.
Sofort per Download lieferbar
33 °P sammeln
65,95 €
Als Download kaufen
65,95 €
inkl. MwSt.
Sofort per Download lieferbar
33 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
65,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
33 °P sammeln
Friedrich Hirzebruch
Topological Methods in Algebraic Geometry (eBook, PDF)
Übersetzer: Schwarzenberger, R. L. E.
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 23.63MB
Andere Kunden interessierten sich auch für
- -31%11Topics in Cohomological Studies of Algebraic Varieties (eBook, PDF)73,95 €
- Kang ZuoRepresentations of Fundamental Groups of Algebraic Varieties (eBook, PDF)27,95 €
- The Grothendieck Festschrift, Volume I (eBook, PDF)97,95 €
- F. M. J. Van OystaeyenNon-commutative Algebraic Geometry (eBook, PDF)44,95 €
- Vasile BrinzanescuHolomorphic Vector Bundles over Compact Complex Surfaces (eBook, PDF)30,95 €
- Complete Intersections (eBook, PDF)30,95 €
- Algebraic Transformation Groups and Algebraic Varieties (eBook, PDF)73,95 €
-
-
- -23%11
Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 232
- Erscheinungstermin: 11. November 2013
- Englisch
- ISBN-13: 9783662306970
- Artikelnr.: 53101972
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Biography of Friedrich Hirzebruch Friedrich Hirzebruch was born on October 17, 1927 in Hamm, Germany. He studied mathematics at the University of Münster and the ETH Zürich, under Heinrich Behnke and Heinz Hopf. Shortly after the award of his doctoral degree in 1950, he obtained an assistantship in Erlangen and then a membership at the Institute for Advanced Study, Princeton, followed by an assistant professorship at Princeton University. In 1956 he returned to Germany to a chair at the University of Bonn, which he held until his retirement in 1993. Since 1980 he has been the Director of the Max Planck Institute for Mathematics in Bonn. Hirzebruch's work has been fundamental in combining topology, algebraic and differential geometry and number theory. It has had a deep and far-reaching influence on the work of many others, who have expanded and generalized his ideas. His most famous result is the theorem of Riemann-Roch-Hirzebruch.
One. Preparatory material.
§ 1. Multiplicative sequences.
§2. Sheaves.
§3. Fibre bundles.
§ 4. Characteristic classes.
Two. The cobordism ring.
§ 5. Pontrjagin numbers.
§ 6. The ring $$\tilde \Omega \otimes \mathcal{Q}$$ ?Q.
§ 7. The cobordism ring ?.
§ 8. The index of a 4 k
dimensional manifold.
§ 9. The virtual index.
Three. The Todd genus.
§ 10. Definition of the Todd genus.
§ 11. The virtual generalised Todd genus.
§ 12. The T
characteristic of a GL(q, C)
bundle.
§ 13. Split manifolds and splitting methods.
§ 14. Multiplicative properties of the Todd genus.
Four. The Riemann
Roch theorem for algebraic manifolds.
§ 15. Cohomology of compact complex manifolds.
§ 16. Further properties of the ?y
characteristic.
§ 17. The virtual ? y
characteristic.
§ 18. Some fundamental theorems of Kodaira.
§ 19. The virtual ? y
characteristic for algebraic manifolds.
§ 20. The Riemann
Roch theorem for algebraic manifolds and complex analytic line bundles.
§21. The Riemann
Roch theorem for algebraic manifolds and complex analytic vector bundles.
§ 26. Integrality theorems for differentiate manifolds.
A spectral sequence for complex analytic bundles.
§ 1. Multiplicative sequences.
§2. Sheaves.
§3. Fibre bundles.
§ 4. Characteristic classes.
Two. The cobordism ring.
§ 5. Pontrjagin numbers.
§ 6. The ring $$\tilde \Omega \otimes \mathcal{Q}$$ ?Q.
§ 7. The cobordism ring ?.
§ 8. The index of a 4 k
dimensional manifold.
§ 9. The virtual index.
Three. The Todd genus.
§ 10. Definition of the Todd genus.
§ 11. The virtual generalised Todd genus.
§ 12. The T
characteristic of a GL(q, C)
bundle.
§ 13. Split manifolds and splitting methods.
§ 14. Multiplicative properties of the Todd genus.
Four. The Riemann
Roch theorem for algebraic manifolds.
§ 15. Cohomology of compact complex manifolds.
§ 16. Further properties of the ?y
characteristic.
§ 17. The virtual ? y
characteristic.
§ 18. Some fundamental theorems of Kodaira.
§ 19. The virtual ? y
characteristic for algebraic manifolds.
§ 20. The Riemann
Roch theorem for algebraic manifolds and complex analytic line bundles.
§21. The Riemann
Roch theorem for algebraic manifolds and complex analytic vector bundles.
§ 26. Integrality theorems for differentiate manifolds.
A spectral sequence for complex analytic bundles.
One. Preparatory material.
§ 1. Multiplicative sequences.
§2. Sheaves.
§3. Fibre bundles.
§ 4. Characteristic classes.
Two. The cobordism ring.
§ 5. Pontrjagin numbers.
§ 6. The ring $$\tilde \Omega \otimes \mathcal{Q}$$ ?Q.
§ 7. The cobordism ring ?.
§ 8. The index of a 4 k
dimensional manifold.
§ 9. The virtual index.
Three. The Todd genus.
§ 10. Definition of the Todd genus.
§ 11. The virtual generalised Todd genus.
§ 12. The T
characteristic of a GL(q, C)
bundle.
§ 13. Split manifolds and splitting methods.
§ 14. Multiplicative properties of the Todd genus.
Four. The Riemann
Roch theorem for algebraic manifolds.
§ 15. Cohomology of compact complex manifolds.
§ 16. Further properties of the ?y
characteristic.
§ 17. The virtual ? y
characteristic.
§ 18. Some fundamental theorems of Kodaira.
§ 19. The virtual ? y
characteristic for algebraic manifolds.
§ 20. The Riemann
Roch theorem for algebraic manifolds and complex analytic line bundles.
§21. The Riemann
Roch theorem for algebraic manifolds and complex analytic vector bundles.
§ 26. Integrality theorems for differentiate manifolds.
A spectral sequence for complex analytic bundles.
§ 1. Multiplicative sequences.
§2. Sheaves.
§3. Fibre bundles.
§ 4. Characteristic classes.
Two. The cobordism ring.
§ 5. Pontrjagin numbers.
§ 6. The ring $$\tilde \Omega \otimes \mathcal{Q}$$ ?Q.
§ 7. The cobordism ring ?.
§ 8. The index of a 4 k
dimensional manifold.
§ 9. The virtual index.
Three. The Todd genus.
§ 10. Definition of the Todd genus.
§ 11. The virtual generalised Todd genus.
§ 12. The T
characteristic of a GL(q, C)
bundle.
§ 13. Split manifolds and splitting methods.
§ 14. Multiplicative properties of the Todd genus.
Four. The Riemann
Roch theorem for algebraic manifolds.
§ 15. Cohomology of compact complex manifolds.
§ 16. Further properties of the ?y
characteristic.
§ 17. The virtual ? y
characteristic.
§ 18. Some fundamental theorems of Kodaira.
§ 19. The virtual ? y
characteristic for algebraic manifolds.
§ 20. The Riemann
Roch theorem for algebraic manifolds and complex analytic line bundles.
§21. The Riemann
Roch theorem for algebraic manifolds and complex analytic vector bundles.
§ 26. Integrality theorems for differentiate manifolds.
A spectral sequence for complex analytic bundles.