-26%11
36,99 €
49,95 €**
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
18 °P sammeln
-26%11
36,99 €
49,95 €**
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
18 °P sammeln
Als Download kaufen
49,95 €****
-26%11
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
18 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
49,95 €****
-26%11
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
18 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 31.42MB
Andere Kunden interessierten sich auch für
- Herbert AmannAnalysis II (eBook, PDF)20,67 €
- Herbert AmannAnalysis III (eBook, PDF)20,67 €
- Global Analysis (eBook, PDF)28,95 €
- G. GierzBundles of Topological Vector Spaces and Their Duality (eBook, PDF)30,95 €
- -22%11Rudolf F. RotheFunktionentheorie und ihre Anwendung in der Technik (eBook, PDF)42,99 €
- B. BoossTopology and Analysis (eBook, PDF)69,95 €
- -8%11Ilka AgricolaGlobale Analysis (eBook, PDF)36,99 €
- -22%11
- -22%11
-
Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 352
- Erscheinungstermin: 12. März 2013
- Deutsch
- ISBN-13: 9783642667527
- Artikelnr.: 53095616
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
I. Operatoren mit Index.- 1. Fredholmoperatoren. Hierarchie mathematischer Objekte. Begriff des Fredholmoperators.- 2. Algebraische Eigenschaften. Operatoren von endlichem Rang. Das Schlangenlemma:. Operatoren von endlichem Rang und die Fredholmsche Integralgleichung.- 3. Analytische Methoden. Kompakte Operatoren. Analytische Methoden. Der adjungierte Operator. Kompakte Operatoren. Die klassischen Integraloperatoren.- 4. Die Fredholmalternative. Das Rieszsche Lemma. Das Sturm-Liouvillesche Randwertproblem.- 5. Die Hauptsätze. Die Calkinalgebra. Störungstheorie. Homotopieinvarianz des Index.- 6. Familien von invertierbaren Operatoren. Satz von Kuiper. Homotopien von operatorwertigen Funktionen. Der Satz von Kuiper.- 7. Familien von Fredholmoperatoren. Indexbündel. Die Topologie von F. Die Konstruktion des Indexbündels. Der Satz von Atiyah-Jänich. Homotopie und unitäre Äquivalenz.- 8. Fourierreihen und -integrale (Zusammenstellung der Grundbegriffe). Fourierreihen. Fourierintegral. Höherdimensionale Fourierintegrale.- 9. Wiener-Hopf-Operatoren. Das Beispielreservoir für Fredholmoperatoren. Herkunft und prinzipielle Bedeutung der Wiener-Hopf-Operatoren. Die Kennlinie eines Wiener-Hopf-Operators. Wiener-Hopf-Operatoren und harmonische Analyse. Die diskrete Indexformel. Der Systemfall. Kontinuierliches Analogon.- II. Analysis auf Mannigfaltigkeiten.- 1. Partielle Differentialgleichungen. Lineare partielle Differentialgleichungen. Elliptische Differentialgleichungen. Wo kommen elliptische Differentialgleichungen vor. Randwertbedingungen. Hauptfragen der Analysis und das Indexproblem. Numerische Aspekte. Elementare Beispiele.- 2. Differential Operatoren über Mannigfaltigkeiten. Motivation. Ltifferenzierbare Mannigfaltigkeiten - Grundbegriffe. Geometrie derC?-Abbildungen. Integration auf Mannigfaltigkeiten. Differentialoperatoren auf Mannigfaltigkeiten. Berandete Mannigfaltigkeiten.- 3. Pseudodifferentialoperatoren. Motivation. Kanonische Pseudodifferentialoperatoren. Pseudodifferentialoperatoren auf Mannigfaltigkeiten. Näherungsrechnung für Pseudodifferentialoperatoren.- 4. Sobolewräume (Steilkurs). Motivation. Definition. Die Hauptsätze über Sobolewräume. Fallstudien.- 5. Elliptische Operatoren über geschlossenen Mannigfaltigkeiten. Stetigkeit von Pseudodifferentialoperatoren. Elliptische Operatoren.- 6. Elliptische Randwertsysteme I (Differentialoperatoren). Differentialgleichungen mit konstanten Koeffizienten. Systeme von Differentialgleichungen mit konstanten Koeffizienten. Variable Koeffizienten.- 7. Elliptische Differential Operatoren 1. Ordnung mit Randbedingungen. Die topologische Bedeutung von Randwertbedingungen (Fallstudie). Verallgemeinerungen (heuristisch).- 8. Elliptische Randwertsysteme II (überblick). Das Poissonprinzip. Die Greensche Algebra. Der elliptische Fall.- III. Die Atiyah-Singer-Indexformel.- 1. Einführung in die algebraische Topologie (K-Theorie). Umlaufzahlen. Die Topologie der allgemeinen linearen Gruppe. Der Ring der Vektorraumbündel. K-Theorie mit kompaktem Träger. Beweis des Periodizitätssatzes von R. Bott.- 2. Die Indexformel im euklidischen Fall. Indexformel und Bottperiodizität. Das Differenzbündel eines elliptischen Operators. Die Indexformel.- 3. Die Indexformel für geschlossene Mannigfaltigkeiten. Die Indexformel. Vergleich der Beweise: Der Kobordismus-Beweis. Vergleich der Beweise: Der Einbettungsbeweis. Vergleich der Beweise: Der Wärmeleitungsbeweis.- 4. Anwendungen (Übersicht). Kohomologische Fassung der Indexformel. Der Systemfall (triviale Bündel). Beispielefür verschwindenden Index. Eulerzahl und Signatur. Vektorfelder auf Mannigfaltigkeiten. Abelsche Integrale und Riemannsche Flächen. Der Satz von Riemann-Roch-tiirzebruch. Der Index elliptischer Randwertprobleme. Reelle Operatoren. Die Lefschetzsche Fixpunktformel. Analysis auf symmetrischen Räumen. Weitere Anwendungen.- Anhang: Was sind Vektorraumbündel?.- Literatur.- Symbolverzeichnis.- Namenverzeichni.
I. Operatoren mit Index.- 1. Fredholmoperatoren. Hierarchie mathematischer Objekte. Begriff des Fredholmoperators.- 2. Algebraische Eigenschaften. Operatoren von endlichem Rang. Das Schlangenlemma:. Operatoren von endlichem Rang und die Fredholmsche Integralgleichung.- 3. Analytische Methoden. Kompakte Operatoren. Analytische Methoden. Der adjungierte Operator. Kompakte Operatoren. Die klassischen Integraloperatoren.- 4. Die Fredholmalternative. Das Rieszsche Lemma. Das Sturm-Liouvillesche Randwertproblem.- 5. Die Hauptsätze. Die Calkinalgebra. Störungstheorie. Homotopieinvarianz des Index.- 6. Familien von invertierbaren Operatoren. Satz von Kuiper. Homotopien von operatorwertigen Funktionen. Der Satz von Kuiper.- 7. Familien von Fredholmoperatoren. Indexbündel. Die Topologie von F. Die Konstruktion des Indexbündels. Der Satz von Atiyah-Jänich. Homotopie und unitäre Äquivalenz.- 8. Fourierreihen und -integrale (Zusammenstellung der Grundbegriffe). Fourierreihen. Fourierintegral. Höherdimensionale Fourierintegrale.- 9. Wiener-Hopf-Operatoren. Das Beispielreservoir für Fredholmoperatoren. Herkunft und prinzipielle Bedeutung der Wiener-Hopf-Operatoren. Die Kennlinie eines Wiener-Hopf-Operators. Wiener-Hopf-Operatoren und harmonische Analyse. Die diskrete Indexformel. Der Systemfall. Kontinuierliches Analogon.- II. Analysis auf Mannigfaltigkeiten.- 1. Partielle Differentialgleichungen. Lineare partielle Differentialgleichungen. Elliptische Differentialgleichungen. Wo kommen elliptische Differentialgleichungen vor. Randwertbedingungen. Hauptfragen der Analysis und das Indexproblem. Numerische Aspekte. Elementare Beispiele.- 2. Differential Operatoren über Mannigfaltigkeiten. Motivation. Ltifferenzierbare Mannigfaltigkeiten - Grundbegriffe. Geometrie derC?-Abbildungen. Integration auf Mannigfaltigkeiten. Differentialoperatoren auf Mannigfaltigkeiten. Berandete Mannigfaltigkeiten.- 3. Pseudodifferentialoperatoren. Motivation. Kanonische Pseudodifferentialoperatoren. Pseudodifferentialoperatoren auf Mannigfaltigkeiten. Näherungsrechnung für Pseudodifferentialoperatoren.- 4. Sobolewräume (Steilkurs). Motivation. Definition. Die Hauptsätze über Sobolewräume. Fallstudien.- 5. Elliptische Operatoren über geschlossenen Mannigfaltigkeiten. Stetigkeit von Pseudodifferentialoperatoren. Elliptische Operatoren.- 6. Elliptische Randwertsysteme I (Differentialoperatoren). Differentialgleichungen mit konstanten Koeffizienten. Systeme von Differentialgleichungen mit konstanten Koeffizienten. Variable Koeffizienten.- 7. Elliptische Differential Operatoren 1. Ordnung mit Randbedingungen. Die topologische Bedeutung von Randwertbedingungen (Fallstudie). Verallgemeinerungen (heuristisch).- 8. Elliptische Randwertsysteme II (überblick). Das Poissonprinzip. Die Greensche Algebra. Der elliptische Fall.- III. Die Atiyah-Singer-Indexformel.- 1. Einführung in die algebraische Topologie (K-Theorie). Umlaufzahlen. Die Topologie der allgemeinen linearen Gruppe. Der Ring der Vektorraumbündel. K-Theorie mit kompaktem Träger. Beweis des Periodizitätssatzes von R. Bott.- 2. Die Indexformel im euklidischen Fall. Indexformel und Bottperiodizität. Das Differenzbündel eines elliptischen Operators. Die Indexformel.- 3. Die Indexformel für geschlossene Mannigfaltigkeiten. Die Indexformel. Vergleich der Beweise: Der Kobordismus-Beweis. Vergleich der Beweise: Der Einbettungsbeweis. Vergleich der Beweise: Der Wärmeleitungsbeweis.- 4. Anwendungen (Übersicht). Kohomologische Fassung der Indexformel. Der Systemfall (triviale Bündel). Beispielefür verschwindenden Index. Eulerzahl und Signatur. Vektorfelder auf Mannigfaltigkeiten. Abelsche Integrale und Riemannsche Flächen. Der Satz von Riemann-Roch-tiirzebruch. Der Index elliptischer Randwertprobleme. Reelle Operatoren. Die Lefschetzsche Fixpunktformel. Analysis auf symmetrischen Räumen. Weitere Anwendungen.- Anhang: Was sind Vektorraumbündel?.- Literatur.- Symbolverzeichnis.- Namenverzeichni.