46,95 €
46,95 €
inkl. MwSt.
Sofort per Download lieferbar
23 °P sammeln
46,95 €
Als Download kaufen
46,95 €
inkl. MwSt.
Sofort per Download lieferbar
23 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
46,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
23 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Transformation Geometry: An Introduction to Symmetry offers a modern approach to Euclidean Geometry. This study of the automorphism groups of the plane and space gives the classical concrete examples that serve as a meaningful preparation for the standard undergraduate course in abstract algebra. The detailed development of the isometries of the plane is based on only the most elementary geometry and is appropriate for graduate courses for secondary teachers.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 29.69MB
Andere Kunden interessierten sich auch für
- G. E. MartinThe Foundations of Geometry and the Non-Euclidean Plane (eBook, PDF)48,95 €
- Robin HartshorneGeometry: Euclid and Beyond (eBook, PDF)44,95 €
- Roger FennGeometry (eBook, PDF)28,95 €
- Jean GallierGeometric Methods and Applications (eBook, PDF)65,95 €
- -23%11Ana Irene Ramírez GalarzaIntroduction to Classical Geometries (eBook, PDF)40,95 €
- Shlomo LibeskindEuclidean, Non-Euclidean, and Transformational Geometry (eBook, PDF)53,95 €
- George A. JenningsModern Geometry with Applications (eBook, PDF)48,95 €
-
- -23%11
-
Transformation Geometry: An Introduction to Symmetry offers a modern approach to Euclidean Geometry. This study of the automorphism groups of the plane and space gives the classical concrete examples that serve as a meaningful preparation for the standard undergraduate course in abstract algebra. The detailed development of the isometries of the plane is based on only the most elementary geometry and is appropriate for graduate courses for secondary teachers.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer New York
- Seitenzahl: 240
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461256809
- Artikelnr.: 43986645
- Verlag: Springer New York
- Seitenzahl: 240
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461256809
- Artikelnr.: 43986645
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Introduction.
1.1 Transformations and Collineations.
1.2 Geometric Notation.
1.3 Exercises.
2 Properties of Transformations.
2.1 Groups of Transformations.
2.2 Involutions.
2.3 Exercises.
3 Translations and Halfturns.
3.1 Translations.
3.2 Halfturns.
3.3 Exercises.
4 Reflections.
4.1 Equations for a Reflection.
4.2 Properties of a Reflection.
4.3 Exercises.
5 Congruence.
5.1 Isometries as Products of Reflections.
5.2 Paper Folding Experiments and Rotations.
5.3 Exercises.
6 The Product of Two Reflections.
6.1 Translations and Rotations.
6.2 Fixed Points and Involutions.
6.3 Exercises.
7 Even Isometries.
7.1 Parity.
7.2 The Dihedral Groups.
7.3 Exercises.
8 Classification of Plane Isometries.
8.1 Glide Reflections.
8.2 Leonardo's Theorem.
8.3 Exercises.
9 Equations for Isometries.
9.1 Equations.
9.2 Supplementary Exercises (Chapter 1
8).
9.3 Exercises.
10 The Seven Frieze Groups.
10.1 Frieze Groups.
10.2 Frieze Patterns.
10.3 Exercises.
11 The Seventeen Wallpaper Groups.
11.1 The Crystallographic Restriction.
11.2 Wallpaper Groups and Patterns.
11.3 Exercises.
12 Tessellations.
12.1 Tiles.
12.2 Reptiles.
12.3 Exercises.
13 Similarities on the Plane.
13.1 Classification of Similarities.
13.2 Equations for Similarities.
13.3 Exercises.
14 Classical Theorems.
14.1 Menelaus, Ceva, Desargues, Pappus, Pascal.
14.2 Euler, Brianchon, Poncelet, Feuerbach.
14.3 Exercises.
15 Affine Transformations.
15.1 Collineations.
15.2 Linear Transformations.
15.3 Exercises.
16 Transformations on Three
space.
16.1 Isometries on Space.
16.2 Similarities on Space.
16.3 Exercises.
17 Space and Symmetry.
17.1 The Platonic Solids.
17.2 Finite Symmetry Groups on Space.
17.3 Exercises.
Hints and Answers.
Notation Index.
1.1 Transformations and Collineations.
1.2 Geometric Notation.
1.3 Exercises.
2 Properties of Transformations.
2.1 Groups of Transformations.
2.2 Involutions.
2.3 Exercises.
3 Translations and Halfturns.
3.1 Translations.
3.2 Halfturns.
3.3 Exercises.
4 Reflections.
4.1 Equations for a Reflection.
4.2 Properties of a Reflection.
4.3 Exercises.
5 Congruence.
5.1 Isometries as Products of Reflections.
5.2 Paper Folding Experiments and Rotations.
5.3 Exercises.
6 The Product of Two Reflections.
6.1 Translations and Rotations.
6.2 Fixed Points and Involutions.
6.3 Exercises.
7 Even Isometries.
7.1 Parity.
7.2 The Dihedral Groups.
7.3 Exercises.
8 Classification of Plane Isometries.
8.1 Glide Reflections.
8.2 Leonardo's Theorem.
8.3 Exercises.
9 Equations for Isometries.
9.1 Equations.
9.2 Supplementary Exercises (Chapter 1
8).
9.3 Exercises.
10 The Seven Frieze Groups.
10.1 Frieze Groups.
10.2 Frieze Patterns.
10.3 Exercises.
11 The Seventeen Wallpaper Groups.
11.1 The Crystallographic Restriction.
11.2 Wallpaper Groups and Patterns.
11.3 Exercises.
12 Tessellations.
12.1 Tiles.
12.2 Reptiles.
12.3 Exercises.
13 Similarities on the Plane.
13.1 Classification of Similarities.
13.2 Equations for Similarities.
13.3 Exercises.
14 Classical Theorems.
14.1 Menelaus, Ceva, Desargues, Pappus, Pascal.
14.2 Euler, Brianchon, Poncelet, Feuerbach.
14.3 Exercises.
15 Affine Transformations.
15.1 Collineations.
15.2 Linear Transformations.
15.3 Exercises.
16 Transformations on Three
space.
16.1 Isometries on Space.
16.2 Similarities on Space.
16.3 Exercises.
17 Space and Symmetry.
17.1 The Platonic Solids.
17.2 Finite Symmetry Groups on Space.
17.3 Exercises.
Hints and Answers.
Notation Index.
1 Introduction.- 1.1 Transformations and Collineations.- 1.2 Geometric Notation.- 1.3 Exercises.- 2 Properties of Transformations.- 2.1 Groups of Transformations.- 2.2 Involutions.- 2.3 Exercises.- 3 Translations and Halfturns.- 3.1 Translations.- 3.2 Halfturns.- 3.3 Exercises.- 4 Reflections.- 4.1 Equations for a Reflection.- 4.2 Properties of a Reflection.- 4.3 Exercises.- 5 Congruence.- 5.1 Isometries as Products of Reflections.- 5.2 Paper Folding Experiments and Rotations.- 5.3 Exercises.- 6 The Product of Two Reflections.- 6.1 Translations and Rotations.- 6.2 Fixed Points and Involutions.- 6.3 Exercises.- 7 Even Isometries.- 7.1 Parity.- 7.2 The Dihedral Groups.- 7.3 Exercises.- 8 Classification of Plane Isometries.- 8.1 Glide Reflections.- 8.2 Leonardo's Theorem.- 8.3 Exercises.- 9 Equations for Isometries.- 9.1 Equations.- 9.2 Supplementary Exercises (Chapter 1-8).- 9.3 Exercises.- 10 The Seven Frieze Groups.- 10.1 Frieze Groups.- 10.2 Frieze Patterns.- 10.3 Exercises.- 11 The Seventeen Wallpaper Groups.- 11.1 The Crystallographic Restriction.- 11.2 Wallpaper Groups and Patterns.- 11.3 Exercises.- 12 Tessellations.- 12.1 Tiles.- 12.2 Reptiles.- 12.3 Exercises.- 13 Similarities on the Plane.- 13.1 Classification of Similarities.- 13.2 Equations for Similarities.- 13.3 Exercises.- 14 Classical Theorems.- 14.1 Menelaus, Ceva, Desargues, Pappus, Pascal.- 14.2 Euler, Brianchon, Poncelet, Feuerbach.- 14.3 Exercises.- 15 Affine Transformations.- 15.1 Collineations.- 15.2 Linear Transformations.- 15.3 Exercises.- 16 Transformations on Three-space.- 16.1 Isometries on Space.- 16.2 Similarities on Space.- 16.3 Exercises.- 17 Space and Symmetry.- 17.1 The Platonic Solids.- 17.2 Finite Symmetry Groups on Space.- 17.3 Exercises.- Hints and Answers.- Notation Index.
1 Introduction.
1.1 Transformations and Collineations.
1.2 Geometric Notation.
1.3 Exercises.
2 Properties of Transformations.
2.1 Groups of Transformations.
2.2 Involutions.
2.3 Exercises.
3 Translations and Halfturns.
3.1 Translations.
3.2 Halfturns.
3.3 Exercises.
4 Reflections.
4.1 Equations for a Reflection.
4.2 Properties of a Reflection.
4.3 Exercises.
5 Congruence.
5.1 Isometries as Products of Reflections.
5.2 Paper Folding Experiments and Rotations.
5.3 Exercises.
6 The Product of Two Reflections.
6.1 Translations and Rotations.
6.2 Fixed Points and Involutions.
6.3 Exercises.
7 Even Isometries.
7.1 Parity.
7.2 The Dihedral Groups.
7.3 Exercises.
8 Classification of Plane Isometries.
8.1 Glide Reflections.
8.2 Leonardo's Theorem.
8.3 Exercises.
9 Equations for Isometries.
9.1 Equations.
9.2 Supplementary Exercises (Chapter 1
8).
9.3 Exercises.
10 The Seven Frieze Groups.
10.1 Frieze Groups.
10.2 Frieze Patterns.
10.3 Exercises.
11 The Seventeen Wallpaper Groups.
11.1 The Crystallographic Restriction.
11.2 Wallpaper Groups and Patterns.
11.3 Exercises.
12 Tessellations.
12.1 Tiles.
12.2 Reptiles.
12.3 Exercises.
13 Similarities on the Plane.
13.1 Classification of Similarities.
13.2 Equations for Similarities.
13.3 Exercises.
14 Classical Theorems.
14.1 Menelaus, Ceva, Desargues, Pappus, Pascal.
14.2 Euler, Brianchon, Poncelet, Feuerbach.
14.3 Exercises.
15 Affine Transformations.
15.1 Collineations.
15.2 Linear Transformations.
15.3 Exercises.
16 Transformations on Three
space.
16.1 Isometries on Space.
16.2 Similarities on Space.
16.3 Exercises.
17 Space and Symmetry.
17.1 The Platonic Solids.
17.2 Finite Symmetry Groups on Space.
17.3 Exercises.
Hints and Answers.
Notation Index.
1.1 Transformations and Collineations.
1.2 Geometric Notation.
1.3 Exercises.
2 Properties of Transformations.
2.1 Groups of Transformations.
2.2 Involutions.
2.3 Exercises.
3 Translations and Halfturns.
3.1 Translations.
3.2 Halfturns.
3.3 Exercises.
4 Reflections.
4.1 Equations for a Reflection.
4.2 Properties of a Reflection.
4.3 Exercises.
5 Congruence.
5.1 Isometries as Products of Reflections.
5.2 Paper Folding Experiments and Rotations.
5.3 Exercises.
6 The Product of Two Reflections.
6.1 Translations and Rotations.
6.2 Fixed Points and Involutions.
6.3 Exercises.
7 Even Isometries.
7.1 Parity.
7.2 The Dihedral Groups.
7.3 Exercises.
8 Classification of Plane Isometries.
8.1 Glide Reflections.
8.2 Leonardo's Theorem.
8.3 Exercises.
9 Equations for Isometries.
9.1 Equations.
9.2 Supplementary Exercises (Chapter 1
8).
9.3 Exercises.
10 The Seven Frieze Groups.
10.1 Frieze Groups.
10.2 Frieze Patterns.
10.3 Exercises.
11 The Seventeen Wallpaper Groups.
11.1 The Crystallographic Restriction.
11.2 Wallpaper Groups and Patterns.
11.3 Exercises.
12 Tessellations.
12.1 Tiles.
12.2 Reptiles.
12.3 Exercises.
13 Similarities on the Plane.
13.1 Classification of Similarities.
13.2 Equations for Similarities.
13.3 Exercises.
14 Classical Theorems.
14.1 Menelaus, Ceva, Desargues, Pappus, Pascal.
14.2 Euler, Brianchon, Poncelet, Feuerbach.
14.3 Exercises.
15 Affine Transformations.
15.1 Collineations.
15.2 Linear Transformations.
15.3 Exercises.
16 Transformations on Three
space.
16.1 Isometries on Space.
16.2 Similarities on Space.
16.3 Exercises.
17 Space and Symmetry.
17.1 The Platonic Solids.
17.2 Finite Symmetry Groups on Space.
17.3 Exercises.
Hints and Answers.
Notation Index.
1 Introduction.- 1.1 Transformations and Collineations.- 1.2 Geometric Notation.- 1.3 Exercises.- 2 Properties of Transformations.- 2.1 Groups of Transformations.- 2.2 Involutions.- 2.3 Exercises.- 3 Translations and Halfturns.- 3.1 Translations.- 3.2 Halfturns.- 3.3 Exercises.- 4 Reflections.- 4.1 Equations for a Reflection.- 4.2 Properties of a Reflection.- 4.3 Exercises.- 5 Congruence.- 5.1 Isometries as Products of Reflections.- 5.2 Paper Folding Experiments and Rotations.- 5.3 Exercises.- 6 The Product of Two Reflections.- 6.1 Translations and Rotations.- 6.2 Fixed Points and Involutions.- 6.3 Exercises.- 7 Even Isometries.- 7.1 Parity.- 7.2 The Dihedral Groups.- 7.3 Exercises.- 8 Classification of Plane Isometries.- 8.1 Glide Reflections.- 8.2 Leonardo's Theorem.- 8.3 Exercises.- 9 Equations for Isometries.- 9.1 Equations.- 9.2 Supplementary Exercises (Chapter 1-8).- 9.3 Exercises.- 10 The Seven Frieze Groups.- 10.1 Frieze Groups.- 10.2 Frieze Patterns.- 10.3 Exercises.- 11 The Seventeen Wallpaper Groups.- 11.1 The Crystallographic Restriction.- 11.2 Wallpaper Groups and Patterns.- 11.3 Exercises.- 12 Tessellations.- 12.1 Tiles.- 12.2 Reptiles.- 12.3 Exercises.- 13 Similarities on the Plane.- 13.1 Classification of Similarities.- 13.2 Equations for Similarities.- 13.3 Exercises.- 14 Classical Theorems.- 14.1 Menelaus, Ceva, Desargues, Pappus, Pascal.- 14.2 Euler, Brianchon, Poncelet, Feuerbach.- 14.3 Exercises.- 15 Affine Transformations.- 15.1 Collineations.- 15.2 Linear Transformations.- 15.3 Exercises.- 16 Transformations on Three-space.- 16.1 Isometries on Space.- 16.2 Similarities on Space.- 16.3 Exercises.- 17 Space and Symmetry.- 17.1 The Platonic Solids.- 17.2 Finite Symmetry Groups on Space.- 17.3 Exercises.- Hints and Answers.- Notation Index.