H. Lüneburg
Translation Planes (eBook, PDF)
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
H. Lüneburg
Translation Planes (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 38.56MB
Andere Kunden interessierten sich auch für
- Theodore G. OstromFinite Translation Planes (eBook, PDF)20,95 €
- Norbert KnarrTranslation Planes (eBook, PDF)19,95 €
- Elmer G. ReesNotes on Geometry (eBook, PDF)44,95 €
- Alain ChencinerCourbes Algébriques Planes (eBook, PDF)24,95 €
- Alexandre V. BorovikMirrors and Reflections (eBook, PDF)48,95 €
- Susan BarwickUnitals in Projective Planes (eBook, PDF)40,95 €
- Geometries and Groups (eBook, PDF)161,95 €
-
-
-
Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 278
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642674129
- Artikelnr.: 53126149
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
I Introduction.- 1. André's Description of Translation Planes.- 2. An Alternative Description of Translation Planes.- 3. Homologies and Shears of Translation Planes.- 4. A Characterization of Pappian Planes.- 5. Quasifields.- II Generalized André Planes.- 6. Some Number Theoretic Tools.- 7. Finite Nearfield Planes.- 8. The Nearfield Plane of Order 9.- 9. Generalized André Planes.- 10. Finite Generalized André Planes.- 11. Homologies of Finite Generalized André Planes.- 12. The André Planes.- 13. The Hall Planes.- 14. The Collineation Group of a Generalized André Plane.- III Rank-3-Planes.- 15. Line Transitive Affine Planes.- 16. Affine Planes of Rank 3.- 17. Rank-3-Planes with an Orbit of Length 2 on the Line at Infinity.- 18. The Planes of Type R*p.- 19. The Planes of Type F*p.- 20. Exceptional Rank-3-Planes.- IV The Suzuki Groups and Their Geometries.- 21. The Suzuki Groups S(K,?).- 22. The Simplicity of the Suzuki Groups.- 23. The Lüneburg Planes.- 24. The Subgroups of the Suzuki Groups.- 25. Möbius Planes.- 26. The Möbius Planes Belonging to the Suzuki Groups.- 27. S(q) as a Collineation Group of PG(3, q).- 28. S(q) as a Collineation Group of a Plane of Order q2.- 29. Geometric Partitions.- 30. Rank-3-Groups.- 31. A Characterization of the Lüneburg Planes.- V Planes Admitting Many Shears.- 32. Unitary Polarities of Finite Desarguesian Projective Planes and Their Centralizers.- 33. A Characterization of A5.- 34. A Characterization of Galois Fields of Odd Characteristic.- 35. Groups Generated by Shears.- VI Flag Transitive Planes.- 36. The Uniqueness of the Desarguesian Plane of Order 8.- 37. Soluble Flag Transitive Collineation Groups.- 38. Some Characterizations of Finite Desarguesian Planes.- 39. Translation Planes Whose Collineation Group Acts DoublyTransitively on l?.- 40. A Theorem of Burmester and Hughes.- 41. Bol Planes.- VII Translation Planes of Order q2 Admitting SL(2, q) as a Collineation Group.- 42. Ovals in Finite Desarguesian Planes.- 43. Twisted Cubics.- 44. Irreducible Representations of SL(2,2r).- 45. The Hering and the Schäffer Planes.- 46. Three Planes of Order 25.- 47. Quasitransvections.- 48. Desarguesian Spreads in V(4, q).- 49. Translation Planes of Order q2 Admitting SL(2, q) as a Collineation Group.- 50. The Collineation Groups of the Hering and Schäffer Planes.- 51. The Theorem of Cofman-Prohaska.- 52. Prohaska's Characterization of the Hall Planes.- Index of Special Symbols.
I Introduction.- 1. André's Description of Translation Planes.- 2. An Alternative Description of Translation Planes.- 3. Homologies and Shears of Translation Planes.- 4. A Characterization of Pappian Planes.- 5. Quasifields.- II Generalized André Planes.- 6. Some Number Theoretic Tools.- 7. Finite Nearfield Planes.- 8. The Nearfield Plane of Order 9.- 9. Generalized André Planes.- 10. Finite Generalized André Planes.- 11. Homologies of Finite Generalized André Planes.- 12. The André Planes.- 13. The Hall Planes.- 14. The Collineation Group of a Generalized André Plane.- III Rank-3-Planes.- 15. Line Transitive Affine Planes.- 16. Affine Planes of Rank 3.- 17. Rank-3-Planes with an Orbit of Length 2 on the Line at Infinity.- 18. The Planes of Type R*p.- 19. The Planes of Type F*p.- 20. Exceptional Rank-3-Planes.- IV The Suzuki Groups and Their Geometries.- 21. The Suzuki Groups S(K,?).- 22. The Simplicity of the Suzuki Groups.- 23. The Lüneburg Planes.- 24. The Subgroups of the Suzuki Groups.- 25. Möbius Planes.- 26. The Möbius Planes Belonging to the Suzuki Groups.- 27. S(q) as a Collineation Group of PG(3, q).- 28. S(q) as a Collineation Group of a Plane of Order q2.- 29. Geometric Partitions.- 30. Rank-3-Groups.- 31. A Characterization of the Lüneburg Planes.- V Planes Admitting Many Shears.- 32. Unitary Polarities of Finite Desarguesian Projective Planes and Their Centralizers.- 33. A Characterization of A5.- 34. A Characterization of Galois Fields of Odd Characteristic.- 35. Groups Generated by Shears.- VI Flag Transitive Planes.- 36. The Uniqueness of the Desarguesian Plane of Order 8.- 37. Soluble Flag Transitive Collineation Groups.- 38. Some Characterizations of Finite Desarguesian Planes.- 39. Translation Planes Whose Collineation Group Acts DoublyTransitively on l?.- 40. A Theorem of Burmester and Hughes.- 41. Bol Planes.- VII Translation Planes of Order q2 Admitting SL(2, q) as a Collineation Group.- 42. Ovals in Finite Desarguesian Planes.- 43. Twisted Cubics.- 44. Irreducible Representations of SL(2,2r).- 45. The Hering and the Schäffer Planes.- 46. Three Planes of Order 25.- 47. Quasitransvections.- 48. Desarguesian Spreads in V(4, q).- 49. Translation Planes of Order q2 Admitting SL(2, q) as a Collineation Group.- 50. The Collineation Groups of the Hering and Schäffer Planes.- 51. The Theorem of Cofman-Prohaska.- 52. Prohaska's Characterization of the Hall Planes.- Index of Special Symbols.