This book discusses discrete geometric analysis, especially topological crystallography and discrete surface theory for trivalent discrete surfaces. Topological crystallography, based on graph theory, provides the most symmetric structure among given combinatorial structures by using the variational principle, and it can reproduce crystal structures existing in nature.
In this regard, the topological crystallography founded by Kotani and Sunada is explained by using many examples. Carbon structures such as fullerenes are considered as trivalent discrete surfaces from the viewpoint of discrete geometric analysis. Discrete surface theories usually have been considered discretization of smooth surfaces. Here, consideration is given to discrete surfaces modeled by crystal/molecular structures, which are essentially discrete objects.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826