An understanding of the intricacies in the turbulent combustion process may be a key to solving many of the current energy and environmental problems. The essential nature of turbulent combustion can be derived from the interaction between stochastic flow fluctuations and deterministic molecular processes, such as chemical reaction and transport processes. Undoubtedly, this is one of the most challenging fields of engineering science today, requiring as it does the interaction of scientists and engineers in the respective fields of chemical kinetics and fluid mechanics. The 28 papers in this volume review recent advances in these two disciplines providing new insights into the fundamental processes, addressing a great deal of recent progress. This progress ranges from descriptions of elementary chemical kinetics, to working those descriptions into combustion calculations with large numbers of elementary steps, to improved understanding of turbulent reacting flows and advances in simulations of turbulent combustion. The contributions will inspire further research on many fronts, advancing the understanding of combustion processes, as well as fostering a growing interdisciplinary cooperation.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.