Twistor Geometry and Non-Linear Systems (eBook, PDF)
Review Lectures given at the 4th Bulgarian Summer School on Mathematical Problems of Quantum Field Theory, Held at Primorsko, Bulgaria, September 1980 Redaktion: Doebner, H. D.; Palev, T. D.
Twistor Geometry and Non-Linear Systems (eBook, PDF)
Review Lectures given at the 4th Bulgarian Summer School on Mathematical Problems of Quantum Field Theory, Held at Primorsko, Bulgaria, September 1980 Redaktion: Doebner, H. D.; Palev, T. D.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Inhaltsangabe
Integral geometry and twistors.- Gauge fields and cohomology of analytic sheaves.- to twistor particle theory.- Complex manifolds and Einstein's equations.- Infinite dimensional lie groups; their orbits, invariants and representations. The geometry of moments.- A few remarks on the construction of solutions of non-linear equations.- Some topics in the theory of singular solutions of nonlinear equations.- Symmetries and conservation laws of dynamical systems.- Group-theoretical aspects of completely integrable systems.- Relativistically invariant models of the field theory integrable by the inverse scattering method.- Space-time versus phase space approach to relativistic particle dynamics.
Integral geometry and twistors.- Gauge fields and cohomology of analytic sheaves.- to twistor particle theory.- Complex manifolds and Einstein's equations.- Infinite dimensional lie groups; their orbits, invariants and representations. The geometry of moments.- A few remarks on the construction of solutions of non-linear equations.- Some topics in the theory of singular solutions of nonlinear equations.- Symmetries and conservation laws of dynamical systems.- Group-theoretical aspects of completely integrable systems.- Relativistically invariant models of the field theory integrable by the inverse scattering method.- Space-time versus phase space approach to relativistic particle dynamics.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497