Yi-Zhi Huang
Two-Dimensional Conformal Geometry and Vertex Operator Algebras (eBook, PDF)
73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
73,95 €
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
37 °P sammeln
Yi-Zhi Huang
Two-Dimensional Conformal Geometry and Vertex Operator Algebras (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Zur Zeit liegt uns keine Inhaltsangabe vor.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 21.47MB
Zur Zeit liegt uns keine Inhaltsangabe vor.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Birkhäuser Boston
- Seitenzahl: 282
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461242765
- Artikelnr.: 44194856
- Verlag: Birkhäuser Boston
- Seitenzahl: 282
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461242765
- Artikelnr.: 44194856
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Notational conventions.- 1. Spheres with tubes.- 1.1. Definitions.- 1.2. The sewing operation.- 1.3. The moduli spaces of spheres with tubes.- 1.4. The sewing equation.- 1.5. Meromorphic functions on the moduli spaces and meromorphic tangent spaces.- 2. Algebraic study of the sewing operation.- 2.1. Formal power series and exponentials of derivations.- 2.2. The formal sewing equation and the sewing identities.- 3. Geometric study of the sewing operation.- 3.1. Moduli spaces, meromorphic functions and meromorphic tangent spaces revisited.- 3.2. The sewing operation and spheres with tubes of type (1,0), (1,1) and (1,2).- 3.3. Generalized spheres with tubes.- 3.4. The sewing formulas and the convergence of the associated series via the Fischer-Grauert Theorem.- 3.5. A Virasoro algebra structure of central charge 0 on the meromorphic tangent space of K(1) at its identity.- 4. Realizations of the sewing identities.- 4.1. The Virasoro algebra and modules.- 4.2. Realizations of the sewing identities for general representations of the Virasoro algebra.- 4.3. Realizations of the sewing identities for positive energy representations of the Virasoro algebra.- 5. Geometric vertex operator algebras.- 5.1. Linear algebra of graded vector spaces with finite-dimensional homogeneous subspaces.- 5.2. The notion of geometric vertex operator algebra.- 5.3. Vertex operator algebras.- 5.4. The isomorphism between the category of geometric vertex operator algebras and the category of vertex operator algebras.- 6. Vertex partial operads.- 6.1. The ?x -rescalable partial operad structure on the sequence K of moduli spaces.- 6.2. The topological and analytic structures on K.- 6.3. The associativity of the sphere partial operad K.- 6.4. Suboperads and partial suboperads of K.- 6.5. Thedeterminant line bundles over K and the partial operad structure.- 6.6. Meromorphic tangent spaces of determinant line bundles and a module for the Virasoro algebra.- 6.7. Proof of the convergence of projective factors in the sewing axiom.- 6.8. Complex powers of the determinant line bundles.- 6.9. ?-extensions of K.- 7. The isomorphism theorem and applications.- 7.1. Vertex associative algebras.- 7.2. The isomorphism theorem.- 7.3. Geometric construction of some Virasoro vertex operator algebras.- 7.4. Isomorphic vertex operator algebras induced from conformal maps.- Appendix A. Answers to selected exercises.- A.1. Exercise 1.3.5: The proof of Proposition 1.3.4.- A.2. Exercise 2.1.8: Another proof of Proposition 2.1.7.- A.3. Exercise 2.1.12: The proof of Proposition 2.1.11.- A.4. Exercise 2.1.17: The proof of Proposition 2.1.16.- A.5. Exercise 2.1.20: The proof of Proposition 2.1.19.- A.6. Exercise 3.4.2: The sewing formulas.- A.7. Exercise 3.5.1: The definition of the Virasoro bracket.- A.8. Exercise 3.5.3: The calculation of the Virasoro bracket.- A.10. Exercise 5.4.3: The proof of the formula (5.4.10).- A.11. Exercise 6.6.3: The proof of the formula (6.6.20).- A.12. Exercise 6.7.2: The proof of Lemma 6.7.1.- Appendix B. (LB)-spaces and complex (LB)-manifolds.- Appendix C. Operads and partial operads.- C.1. Operads, partial operads and associated algebraic structures.- C.2. Rescaling groups for partial operads, rescalable partial operads and associated algebraic structures.- C.3. Another definition of (partial) operad.- Appendix D. Determinant lines and determinant line bundles.- D.1. Some classes of bounded linear operators.- D.2. Determinant lines.- D.3. Determinant lines over Riemann surfaces with parametrized boundaries.- D.4. Canonical isomorphisms associatedto sewing and determinant line bundles over moduli spaces.- D.6. One-dimensional genus-zero modular functors and the Mumford-Segal theorem.
Notational conventions.- 1. Spheres with tubes.- 1.1. Definitions.- 1.2. The sewing operation.- 1.3. The moduli spaces of spheres with tubes.- 1.4. The sewing equation.- 1.5. Meromorphic functions on the moduli spaces and meromorphic tangent spaces.- 2. Algebraic study of the sewing operation.- 2.1. Formal power series and exponentials of derivations.- 2.2. The formal sewing equation and the sewing identities.- 3. Geometric study of the sewing operation.- 3.1. Moduli spaces, meromorphic functions and meromorphic tangent spaces revisited.- 3.2. The sewing operation and spheres with tubes of type (1,0), (1,1) and (1,2).- 3.3. Generalized spheres with tubes.- 3.4. The sewing formulas and the convergence of the associated series via the Fischer-Grauert Theorem.- 3.5. A Virasoro algebra structure of central charge 0 on the meromorphic tangent space of K(1) at its identity.- 4. Realizations of the sewing identities.- 4.1. The Virasoro algebra and modules.- 4.2. Realizations of the sewing identities for general representations of the Virasoro algebra.- 4.3. Realizations of the sewing identities for positive energy representations of the Virasoro algebra.- 5. Geometric vertex operator algebras.- 5.1. Linear algebra of graded vector spaces with finite-dimensional homogeneous subspaces.- 5.2. The notion of geometric vertex operator algebra.- 5.3. Vertex operator algebras.- 5.4. The isomorphism between the category of geometric vertex operator algebras and the category of vertex operator algebras.- 6. Vertex partial operads.- 6.1. The ?x -rescalable partial operad structure on the sequence K of moduli spaces.- 6.2. The topological and analytic structures on K.- 6.3. The associativity of the sphere partial operad K.- 6.4. Suboperads and partial suboperads of K.- 6.5. Thedeterminant line bundles over K and the partial operad structure.- 6.6. Meromorphic tangent spaces of determinant line bundles and a module for the Virasoro algebra.- 6.7. Proof of the convergence of projective factors in the sewing axiom.- 6.8. Complex powers of the determinant line bundles.- 6.9. ?-extensions of K.- 7. The isomorphism theorem and applications.- 7.1. Vertex associative algebras.- 7.2. The isomorphism theorem.- 7.3. Geometric construction of some Virasoro vertex operator algebras.- 7.4. Isomorphic vertex operator algebras induced from conformal maps.- Appendix A. Answers to selected exercises.- A.1. Exercise 1.3.5: The proof of Proposition 1.3.4.- A.2. Exercise 2.1.8: Another proof of Proposition 2.1.7.- A.3. Exercise 2.1.12: The proof of Proposition 2.1.11.- A.4. Exercise 2.1.17: The proof of Proposition 2.1.16.- A.5. Exercise 2.1.20: The proof of Proposition 2.1.19.- A.6. Exercise 3.4.2: The sewing formulas.- A.7. Exercise 3.5.1: The definition of the Virasoro bracket.- A.8. Exercise 3.5.3: The calculation of the Virasoro bracket.- A.10. Exercise 5.4.3: The proof of the formula (5.4.10).- A.11. Exercise 6.6.3: The proof of the formula (6.6.20).- A.12. Exercise 6.7.2: The proof of Lemma 6.7.1.- Appendix B. (LB)-spaces and complex (LB)-manifolds.- Appendix C. Operads and partial operads.- C.1. Operads, partial operads and associated algebraic structures.- C.2. Rescaling groups for partial operads, rescalable partial operads and associated algebraic structures.- C.3. Another definition of (partial) operad.- Appendix D. Determinant lines and determinant line bundles.- D.1. Some classes of bounded linear operators.- D.2. Determinant lines.- D.3. Determinant lines over Riemann surfaces with parametrized boundaries.- D.4. Canonical isomorphisms associatedto sewing and determinant line bundles over moduli spaces.- D.6. One-dimensional genus-zero modular functors and the Mumford-Segal theorem.