109,95 €
109,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
109,95 €
109,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
109,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
109,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: PDF

Frontmatter -- VORWORT -- INHALT -- § 1. Axenkomplex -- § 2. Axen, Inhalt und Asymptotenwinkel der Ellipse, welche eine gegebene Ebene aus einem gegebenen Ellipsoid ausschneidet -- § 3. Axen einer Ellipse auf dem Ellipsoid, deren Mittelpunkt gegeben ist -- § 4. Ort der Mittelpunkte von Ellipsen auf einem Ellipsoid, welche die eine Axe gleich einer gegebenen Länge haben -- § 5. Einhüllende der Ebenen von Ellipsen, welche auf einem Ellipsoid liegen, die eine Axe gleich haben, und deren Ebenen ein ihm ähnliches, ähnlich liegendes und konzentrisches Ellipsoid berühren -- § 6. Flächengleiche…mehr

Produktbeschreibung
Frontmatter -- VORWORT -- INHALT -- § 1. Axenkomplex -- § 2. Axen, Inhalt und Asymptotenwinkel der Ellipse, welche eine gegebene Ebene aus einem gegebenen Ellipsoid ausschneidet -- § 3. Axen einer Ellipse auf dem Ellipsoid, deren Mittelpunkt gegeben ist -- § 4. Ort der Mittelpunkte von Ellipsen auf einem Ellipsoid, welche die eine Axe gleich einer gegebenen Länge haben -- § 5. Einhüllende der Ebenen von Ellipsen, welche auf einem Ellipsoid liegen, die eine Axe gleich haben, und deren Ebenen ein ihm ähnliches, ähnlich liegendes und konzentrisches Ellipsoid berühren -- § 6. Flächengleiche Ellipsen auf einem Ellipsoid -- § 7. Ort der Mittelpunkte und Pole von ähnlichen Ellipsen auf einem Ellipsoid -- § 8. Beziehungen, welche zwischen den Axen zweier benachbarter Ellipsen auf einem Ellipsoid bestehen -- § 9. Geometrische Deutung der im § 8 gefundenen Bedingungen -- § 10. Ort der Mittelpunkte und Pole kongruenter Ellipsen auf einem Ellipsoid -- § 11. Einhüllende von Ellipsen, die auf einem Ellipsoid liegen und einer gegebenen Ellipse kongruent sind. (Kurven x = const.) -- § 12. Die Kurven ?. = const -- § 13. Ort der Punkte, in welchen sich die Ebenen von drei benachbarten kongruenten Ellipsen auf einem Ellipsoid schneiden -- § 14. Über die Gestalt einer Kurve x = const. Anzahl der reellen kongruenten Ellipsen, welche durch einen gegebenen Punkt des Ellipsoides gehen -- Tafel 1 -- Tafel 2

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.