Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Der vorliegende zweite Band der Reihe "TEUBNER-Archiv zur Mathematik enthält fotomechanische Nachdrucke der grundlegenden Arbeiten Georg CANTORS zur Mengenlehre aus den Jahren 1872 bis 1884. Er umfasst all jene Publikationen CANTORS, durch die er - nach einer heute allgemein akzeptierten Auffassung - zum Begründer der Mengenlehre und der mengentheoretischen Topologie wurde, und will damit diese für die Herausbildung der heutigen Mathematik so fundamentalen Arbeiten einem breiten Leserkreis im Original leicht zugänglich machen. Die Arbeit "Über die Ausdehnung eines Satzes aus der Theorie der…mehr
Der vorliegende zweite Band der Reihe "TEUBNER-Archiv zur Mathematik enthält fotomechanische Nachdrucke der grundlegenden Arbeiten Georg CANTORS zur Mengenlehre aus den Jahren 1872 bis 1884. Er umfasst all jene Publikationen CANTORS, durch die er - nach einer heute allgemein akzeptierten Auffassung - zum Begründer der Mengenlehre und der mengentheoretischen Topologie wurde, und will damit diese für die Herausbildung der heutigen Mathematik so fundamentalen Arbeiten einem breiten Leserkreis im Original leicht zugänglich machen. Die Arbeit "Über die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen" aus dem Band 5 der Mathematischen Annalen, die an frühere Publikationen CANTORS über trigonometrische Reihen anknüpft und durch die deutlich wird, dass es zunächst konkrete analytische Probleme waren, die CANTOR auf die Betrachtung mengentheoretischer Begriffe führten. Sie enthält einerseits die heute allgemein mit seinem Namen verknüpfte Erweiterung des Bereichs der rationalen zahlen zum Bereich der reellen Zahlen mittels Fundamentalfolgen und das nach ihm benannte Stetigkeitsaxiom. Andererseits wird in ihr der Begriff der ersten Ableitung P` einer (linearen) Punktmenge P eingeführt, der heute einer der grundlegenden Begriffe der mengentheoretischen Topologie ist und der in den späteren Publikationen CANTORS bei der Herausbildung der allgemeinen Mengenlehre eine wesentliche Rolle spielte und ihn insbesondere zu den transfiniten Ordinalzahlen führte.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
[A] Über die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen. (Math. Ann. 5 (1872), 123-132; [26, S. 92]).- [B] Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen. (Journal f. d. reine u. angew. Math. 77 (1874), 258-262; [26, S. 115]).- [C] Ein Beitrag zur Mannigfaltigkeitslehre. (Journal f. d. reine u. angew. Math. 84 (1878), 242-258; [26, S. 119]).- [D] Über unendliche, lineare Punktmannichfaltigkeiten ([26, S. 139]).- 1. (Math. Ann. 15 (1879), 1-7).- 2. (Math. Ann. 17 (1880), 355-358).- 3. (Math. Ann. 20 (1882), 113-121).- 4. (Math. Ann. 21 (1883), 51-58).- 5. (Math. Ann. 21 (1883), 545-591).- 6. (Math. Ann. 23 (1884), 453-488).- Kommentare und Anmerkungen.- Literatur.- Namen- und Sachverzeichnis.
[A] Über die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen. (Math. Ann. 5 (1872), 123-132; [26, S. 92]).- [B] Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen. (Journal f. d. reine u. angew. Math. 77 (1874), 258-262; [26, S. 115]).- [C] Ein Beitrag zur Mannigfaltigkeitslehre. (Journal f. d. reine u. angew. Math. 84 (1878), 242-258; [26, S. 119]).- [D] Über unendliche, lineare Punktmannichfaltigkeiten ([26, S. 139]).- 1. (Math. Ann. 15 (1879), 1-7).- 2. (Math. Ann. 17 (1880), 355-358).- 3. (Math. Ann. 20 (1882), 113-121).- 4. (Math. Ann. 21 (1883), 51-58).- 5. (Math. Ann. 21 (1883), 545-591).- 6. (Math. Ann. 23 (1884), 453-488).- Kommentare und Anmerkungen.- Literatur.- Namen- und Sachverzeichnis.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826